10-mm-inner-diameter pipe made of commercial steel is used to heat a liquid in an industrial process. The liquid enters the pipe with Ti=25°C, V=0.8 m/s. A uniform heat flux is maintained by an electric resistance heater wrapped arounf the outer surface of the pipe, so that the fluid exits at 75°C. Assuming fully developed flow and taking the average fluid properties to be ρ=1000 kg/m3, cp=4000 J/kg·K, µ=2x10-3 kg/m·s, k=0.48 W/m·K, and Pr=10, determine: The required surface heat flux , produced by the heater The surface temperature at the exit, Ts The pressure loss through the piper and the minimum power required to overcome the resistance to flow.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.27P
icon
Related questions
Question

A 10-mm-inner-diameter pipe made of commercial steel is used to heat a liquid in an industrial process. The liquid enters the pipe with Ti=25°C, V=0.8 m/s. A uniform heat flux is maintained by an electric resistance heater wrapped arounf the outer surface of the pipe, so that the fluid exits at 75°C. Assuming fully developed flow and taking the average fluid properties to be ρ=1000 kg/m3, cp=4000 J/kg·K, µ=2x10-3 kg/m·s, k=0.48 W/m·K, and Pr=10, determine:

  • The required surface heat flux , produced by the heater
  • The surface temperature at the exit, Ts
  • The pressure loss through the piper and the minimum power required to overcome the resistance to flow. 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
  • The pressure loss through the pipe and the minimum power required to overcome the resistance to flow.

 

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning