A 1-kg pellet travels with velocity 160 m/s to the right when it collides with a 39-kg hanging mass which is initially at rest. After the collision, the pellet remains lodged in the hanging mass, i.e., it is a completely inelastic collision. The hanging mass (+pellet) then swings upward and reaches a maximum height hmax before swinging downward again. Assume that no external forces are present and therefore the momentum of the system is conserved. What is the velocity v of the hanging mass + pellet immediately after the collision? m/s Submit Answer Tries 0/3 D What is the final kinetic energy Kf of the hanging mass + pellet immediately after the collision? Submit Answer Tries 0/3 What is the maximum height hmax of the swinging hanging mass + pellet in centimeters? cm Submit Answer Tries 0/3

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter6: Momentum, Impulse, And Collisions
Section: Chapter Questions
Problem 45P: A tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers...
icon
Related questions
Question
100%
Please help
A 1-kg pellet travels with velocity 160 m/s to the right when it collides with a 39-kg hanging mass which is initially at rest. After the collision, the pellet remains lodged in the hanging mass, i.e., it is a completely
inelastic collision. The hanging mass (+pellet) then swings upward and reaches a maximum height hmax before swinging downward again. Assume that no external forces are present and therefore the momentum of the
system is conserved.
What is the velocity v of the hanging mass + pellet immediately after the collision?
m/s
Submit Answer Tries 0/3
A
What is the final kinetic energy Kf of the hanging mass + pellet immediately after the collision?
Submit Answer Tries 0/3
What is the maximum height hmax of the swinging hanging mass + pellet in centimeters?
cm
Submit Answer Tries 0/3
Transcribed Image Text:A 1-kg pellet travels with velocity 160 m/s to the right when it collides with a 39-kg hanging mass which is initially at rest. After the collision, the pellet remains lodged in the hanging mass, i.e., it is a completely inelastic collision. The hanging mass (+pellet) then swings upward and reaches a maximum height hmax before swinging downward again. Assume that no external forces are present and therefore the momentum of the system is conserved. What is the velocity v of the hanging mass + pellet immediately after the collision? m/s Submit Answer Tries 0/3 A What is the final kinetic energy Kf of the hanging mass + pellet immediately after the collision? Submit Answer Tries 0/3 What is the maximum height hmax of the swinging hanging mass + pellet in centimeters? cm Submit Answer Tries 0/3
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Impulse
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning