(a) Calculate the magnitude of the gravitational force exerted by the Moon on a 60 kg human standing on the surface of the Moon. (The mass of the Moon is 7.4x1022 kg and its radius is 1.7x106 m.) N (b) Calculate the magnitude of the gravitational force exerted by the human on the Moon. (c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 3 meters away. N (d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!) O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses. Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another. O Treat the humans as though they were points or uniform-density spheres. Treat the Moon as though it were spherically symmetric.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter6: Energy Of A System
Section: Chapter Questions
Problem 15OQ
icon
Related questions
icon
Concept explainers
Question
(a) Calculate the magnitude of the gravitational force exerted by the Moon on a 60 kg human standing on the surface of the
Moon. (The mass of the Moon is 7.4×1022 kg and its radius is 1.7x106 m.)
N
(b) Calculate the magnitude of the gravitational force exerted by the human on the Moon.
N
(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is
standing 3 meters away.
N
(d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false
because they are wrong physics!)
O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses.
| Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another.
O Treat the humans as though they were points or uniform-density spheres.
Treat the Moon as though it were spherically symmetric.
Transcribed Image Text:(a) Calculate the magnitude of the gravitational force exerted by the Moon on a 60 kg human standing on the surface of the Moon. (The mass of the Moon is 7.4×1022 kg and its radius is 1.7x106 m.) N (b) Calculate the magnitude of the gravitational force exerted by the human on the Moon. N (c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 3 meters away. N (d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!) O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses. | Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another. O Treat the humans as though they were points or uniform-density spheres. Treat the Moon as though it were spherically symmetric.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Gravitational Force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning