A concentric tube heat exchanger is used to cool lubricating oil for a large diesel engine. The inner tube is constructed of 2 mm wall thickness stainless steel, having thermal conductivity 16 W/m K. The flow rate of cooling water through the inner tube (radius = 30 mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50 mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is to be used to cool oil from 90°C to 50°C using water available at 283K. The overall heat transfer coefficient is 21.9 W/(m2K). Calculate the length of the tube required for parallel (co-current) flow, and the length of the tube required for counter-current flow. The average heat capacity for oil is 2.131 kJ/(kgK) and for the water 4.178 kJ/(kgK).

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.48P
icon
Related questions
Question
Question B3.
A concentric tube heat exchanger is used to cool lubricating oil for
a large diesel engine. The inner tube is constructed of 2 mm wall
thickness stainless steel, having thermal conductivity 16 W/m K.
The flow rate of cooling water through the inner tube (radius = 30
mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50
mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is
to be used to cool oil from 90°C to 50°C using water available at
283K. The overall heat transfer coefficient is 21.9 W/(m2K).
Calculate the length of the tube required for parallel (co-current)
flow, and the length of the tube required for counter-current flow.
The average heat capacity for oil is 2.131 kJ/(kgK) and for the
water 4.178 kJ/(kgK).
Transcribed Image Text:Question B3. A concentric tube heat exchanger is used to cool lubricating oil for a large diesel engine. The inner tube is constructed of 2 mm wall thickness stainless steel, having thermal conductivity 16 W/m K. The flow rate of cooling water through the inner tube (radius = 30 mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50 mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is to be used to cool oil from 90°C to 50°C using water available at 283K. The overall heat transfer coefficient is 21.9 W/(m2K). Calculate the length of the tube required for parallel (co-current) flow, and the length of the tube required for counter-current flow. The average heat capacity for oil is 2.131 kJ/(kgK) and for the water 4.178 kJ/(kgK).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning