A force of 5 pounds stretches a spring 1 foot. A mass weighing 6.4 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 1.2 times the instantaneous velocity. (a) Find the equation of motion if the mass s initially released from rest from a point 1 foot above the equilibrium position. x(t) = ft (b) Express the equation of motion in the form x(t) = Ae-t sin(√²-²t + p), which is given in (23) of Section 3.8. (Round up to two decimal places.) x(t) = ft (c) Find the first time at which the mass passes through the equilibrium position heading upward. (Round your answer to three decimal places.)

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter12: Oscillatory Motion
Section: Chapter Questions
Problem 15P: A vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on...
icon
Related questions
icon
Concept explainers
Topic Video
Question
A force of 5 pounds stretches a spring 1 foot. A mass weighing 6.4 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 1.2 times the
instantaneous velocity.
(a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position.
x(t) =
(b) Express the equation of motion in the form x(t)
x(t)
ft
=
ft
= Ae¯^t sin(√√ ² - ^²t + 4)
9),
which is given in (23) of Section 3.8. (Round p to two decimal places.)
(c) Find the first time at which the mass passes through the equilibrium position heading upward. (Round your answer to three decimal places.)
S
Transcribed Image Text:A force of 5 pounds stretches a spring 1 foot. A mass weighing 6.4 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 1.2 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. x(t) = (b) Express the equation of motion in the form x(t) x(t) ft = ft = Ae¯^t sin(√√ ² - ^²t + 4) 9), which is given in (23) of Section 3.8. (Round p to two decimal places.) (c) Find the first time at which the mass passes through the equilibrium position heading upward. (Round your answer to three decimal places.) S
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University