A large cone-shaped container (height H and radius R) is fed a liquid solution of density ρ at aconstant flow rate q0 . The solution evaporates from its top surface exposed to the sun.(a) Assuming that the rate of evaporation is proportional to the area of the surface with aconstant K (kg/m 2 .s), develop a differential equation for the variation with time of the level ofthe liquid in the container.(b) What should be the feed flow rate to maintain the fluid level constant once it reaches adesired value h*?(c) If the feed was zero, would the rate of change of the level of the fluid depend on the shapeof the cone-shaped container (H,R dimensions)

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.54P
icon
Related questions
Question

A large cone-shaped container (height H and radius R) is fed a liquid solution of density ρ at a
constant flow rate q0 . The solution evaporates from its top surface exposed to the sun.
(a) Assuming that the rate of evaporation is proportional to the area of the surface with a
constant K (kg/m 2 .s), develop a differential equation for the variation with time of the level of
the liquid in the container.
(b) What should be the feed flow rate to maintain the fluid level constant once it reaches a
desired value h*?
(c) If the feed was zero, would the rate of change of the level of the fluid depend on the shape
of the cone-shaped container (H,R dimensions)

AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning