A single-effect falling-film evaporator is used to concentrate orange juice from 14% to 45% solids. The evaporator utilizes a mechanical refrigeration cycle using ammonia as a refrigerant for heating and for condensing the vapors. The refrige-ration cycle is operated at a high-side pressure of 200 psia (1.379 MPa) and a low-side pressure of 50 psia (344.7 kPa). The evaporator is operated at a vapor temperature of 90oF (32.2oC). Feed enters at 70oF (21.1oC). The ratio of insoluble to soluble solids in the juice is 0.09, and the soluble solids consist of glucose and sucrose in 70:30 ratio. Consider the ΔT as the log mean ΔT between the liquid refrigerant temperature and the feed temperature at one point and the hot refri-gerant gas temperature and the concentrated liquid boiling temperature at the other point. The evaporator has a heat transfer surface area of 100 ft2 (9.29 m2), and an overall heat transfer coefficient of 300 BTU (h.ft2.oF) or 1073 W/(m2.K) may be expected. Calculate: Calculate: The evaporator capacity in weight of feed per hour The tons of refrigeration capacity required for the refrigeration unit based in the heating requirement for the evaporator. The additional cooling required for condensation of vapors if the refrigeration unit is designed to provide all of the heating requirements for evaporation.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter22: Condensers
Section: Chapter Questions
Problem 7RQ: When a standard-efficiency air-cooled condenser is used, the condensing refrigerant will normally be...
icon
Related questions
Question
  1. A single-effect falling-film evaporator is used to concentrate orange juice from 14% to 45% solids. The evaporator utilizes a mechanical refrigeration cycle using ammonia as a refrigerant for heating and for condensing the vapors. The refrige-ration cycle is operated at a high-side pressure of 200 psia (1.379 MPa) and a low-side pressure of 50 psia (344.7 kPa). The evaporator is operated at a vapor temperature of 90oF (32.2oC). Feed enters at 70oF (21.1oC). The ratio of insoluble to soluble solids in the juice is 0.09, and the soluble solids consist of glucose and sucrose in 70:30 ratio. Consider the ΔT as the log mean ΔT between the liquid refrigerant temperature and the feed temperature at one point and the hot refri-gerant gas temperature and the concentrated liquid boiling temperature at the other point. The evaporator has a heat transfer surface area of 100 ft2 (9.29 m2), and an overall heat transfer coefficient of 300 BTU (h.ft2.oF) or 1073 W/(m2.K) may be expected. Calculate:

Calculate:

  1. The evaporator capacity in weight of feed per hour
  2. The tons of refrigeration capacity required for the refrigeration unit based in the heating requirement for the evaporator.
  3. The additional cooling required for condensation of vapors if the refrigeration unit is designed to provide all of the heating requirements for evaporation.
Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning