A star has initially a radius of 660000000 m and a period of rotation about its axis of 34 days. Eventually it changes into a neutron star with a radius of only 35000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 5.22E+15 Ob. 24.2 Oc. 0.0413 Od. 1.91E-16 (b) the ratio of initial to final kinetic energy Оa. 1.3Е-23 Ob. 607000 Oc. 1.65E-6

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
A star has initially a radius of 660000000 m and a period of rotation about its axis of 34
days. Eventually it changes into a neutron star with a radius of only 35000 m and a period of
0.2 s. Assuming that the mass has not changed, find
Assume a star has the shape of a sphere.
(Suggestion: do it with formula first, then put the numbers in)
[Recommended time : 5-8 minutes]
(a) the ratio of initial to final angular momentum (Li/Lf)
Oa. 5.22E+15
Ob. 24.2
Oc. 0.0413
Od. 1.91E-16
(b) the ratio of initial to final kinetic energy
Oa. 1.3E-23
Activate V
Go to Setting
Ob. 607000
Oc. 1.65E-6
e here to search
Transcribed Image Text:A star has initially a radius of 660000000 m and a period of rotation about its axis of 34 days. Eventually it changes into a neutron star with a radius of only 35000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 5.22E+15 Ob. 24.2 Oc. 0.0413 Od. 1.91E-16 (b) the ratio of initial to final kinetic energy Oa. 1.3E-23 Activate V Go to Setting Ob. 607000 Oc. 1.65E-6 e here to search
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Stellar evolution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON