An electron and a proton are separated by a distance of 1.6×10^−10 m (roughly the diameter of a single atom). The masses of the electron and proton are me=9.11×10^−31 kg and mp=1.673×10^−27 kg, respectively. The elementary charge e=1.602×10^−19 C. The universal gravitational constant G=6.67×10−11 N·m^2/kg^2 and the coulomb constant ?=8.988×10^9 N·m^2/C^2.

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter7: Electric Potential
Section: Chapter Questions
Problem 41P: An electron is to be accelerated in a uniform electric field having a strength of 2.00106 V/m. (a)...
icon
Related questions
Question

An electron and a proton are separated by a distance of 1.6×10^−10 m (roughly the diameter of a single atom). The masses of the electron and proton are me=9.11×10^−31 kg and mp=1.673×10^−27 kg, respectively. The elementary charge e=1.602×10^−19 C. The universal gravitational constant G=6.67×10−11 N·m^2/kg^2 and the coulomb constant ?=8.988×10^9 N·m^2/C^2.

What is the magnitude F. of the electric force between the
electron and the proton?
F. =
N
What is the magnitude F, of the gravitational force
between the electron and the proton?
Fg =
N
In this scenario, how many times stronger is the electric
force than the gravitational force?
F. =
Transcribed Image Text:What is the magnitude F. of the electric force between the electron and the proton? F. = N What is the magnitude F, of the gravitational force between the electron and the proton? Fg = N In this scenario, how many times stronger is the electric force than the gravitational force? F. =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning