In the given figure below, a 3.0 -kg block is sliding down a 60o-rough incline. The speed of the block is 1.68 m/s at the instant it is 5.25 m from an uncompressed spring located at the other lower end of the incline. The spring has a spring or stiffness constant of 120 N/m and the coefficient of kinetic friction between the block and the incline is 0.35. (a) At what speed (in m/s) will the block strike the spring? (b) What would be the maximum compression (in m) of the spring?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter1: Getting Started
Section: Chapter Questions
Problem 9PQ: The distance to the Sun is 93 miIlion miles. What is the distance to the Sun in the appropriate SI...
icon
Related questions
icon
Concept explainers
Topic Video
Question
100%

In the given figure below, a 3.0 -kg block is sliding down a 60o-rough incline. The speed of the block is 1.68 m/s at the instant it is 5.25 m from an uncompressed spring located at the other lower end of the incline. The spring has a spring or stiffness constant of 120 N/m and the coefficient of kinetic friction between the block and the incline is 0.35. (a) At what speed (in m/s) will the block strike the spring? (b) What would be the maximum compression (in m) of the spring?

5.25 m
60°
Transcribed Image Text:5.25 m 60°
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Can you explain how did you get the 8.6025 m/s

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning