Give the symbolic expression for the emf E using KVL for the circuit with S1 closed and S2 open. Give your answer in terms of the current I, resistor R, capacitors C1 and C2 and charges stored in the respective capacitors Q1 and Q2. Use * to denote product and / to denote division. So to group the product of, say, a and b_1 write a*b_1. And to write a ratio of say, c_1 and d write c_1/d. To add the product and ratio write a*b_1 + c_1/d .   a)Write the mathematical expression for emf E. E= In the figure there's a circuit with an emf E=21V, two resistors R1=35kΩ and R2=5.5kΩ, two capacitors C1=25μF and C2=22μF and two switches S1 and S2. b) Find the time constant for this configuration of the circuit. Time constant τ c) Find how much charge will be stored in C2 after time t=1.3τ seconds. Charge stored in C2

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Give the symbolic expression for the emf E using KVL for the circuit with S1 closed and S2 open. Give your answer in terms of the current I, resistor R, capacitors C1 and C2 and charges stored in the respective capacitors Q1 and Q2.

Use * to denote product and / to denote division. So to group the product of, say, a and b_1 write a*b_1. And to write a ratio of say, c_1 and d write c_1/d. To add the product and ratio write a*b_1 + c_1/d .

 

a)Write the mathematical expression for emf E.

E=

In the figure there's a circuit with an emf E=21V, two resistors R1=35kΩ and R2=5.5kΩ, two capacitors C1=25μF and C2=22μF and two switches S1 and S2.

b) Find the time constant for this configuration of the circuit.

Time constant τ

c) Find how much charge will be stored in C2 after time t=1.3τ seconds.

Charge stored in C2
PartII

 

After t=10τ seconds, we open switch S1 and close switch S2. Mark current time as t′=0. In this configuration, capacitor C2 discharges through the resistor R2.

d) Find the charge stored on the capacitor C2 as the switch S1 was turned off.

Charge stored

e) Find the current throught the resistor R2 at time t′=1.5τ.

Current

f) Find the time from t′=0, that will be taken by the capactor to loose half of its charge.

Time taken to discharge
R
lo
3.
Transcribed Image Text:R lo 3.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
DC circuits
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON