Imagine that you have air in a sealed glass container that has a volume of 1 liter. The pressure inside the container is 1013 hPa and the temperature is 20◦C. You now inject cloud droplets into the chamber without letting any air leak out. The droplets have a radius of 10 micrometers, and you inject a concentration of drops that is typical of what you find in a cloud (200 drops per cm3). Will there be a change in the gas pressure? If so, by what amount? Please provide a calculation. What does your answer tell you about the presence of particles in the atmosphere and their potential influence on pressure?

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter14: Fluid Mechanics
Section: Chapter Questions
Problem 14.39P: How many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a...
icon
Related questions
Question

Imagine that you have air in a sealed glass container that has a volume of 1 liter. The pressure inside the container is 1013 hPa and the temperature is 20◦C. You now inject cloud droplets into the chamber without letting any air leak out. The droplets have a radius of 10 micrometers, and you inject a concentration of drops that is typical of what you find in a cloud (200 drops per cm3). Will there be a change in the gas pressure? If so, by what amount? Please provide a calculation. What does your answer tell you about the presence of particles in the atmosphere and their potential influence on pressure?

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning