Most of the sulfur used in the United States is chemically synthesized from hydrogen sulfide gas recovered from natural gas wells. In the first step of this synthesis, called the Claus process, hydrogen sulfide gas is reacted with dioxygen gas to produce gaseous sulfur dioxide and water. Suppose a chemical engineer studying a new catalyst for the Claus reaction finds that 161. liters per second of dioxygen are consumed when the reaction is run at 166. "C and the dioxygen is supplied at 0.29 atm. Calculate the rate at which sulfur dioxide is being produced. Give your answer in kilograms per second. Round your answer to 2 significant digits. 04/1 O.P X

General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Chapter6: Thermochemisty
Section: Chapter Questions
Problem 6.158QP: An industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the...
icon
Related questions
icon
Concept explainers
Question
Most of the sulfur used in the United States is chemically synthesized from hydrogen sulfide gas recovered from natural gas wells. In the first step of this
synthesis, called the Claus process, hydrogen sulfide gas is reacted with dioxygen gas to produce gaseous sulfur dioxide and water.
Suppose a chemical engineer studying a new catalyst for the Claus reaction finds that 161. liters per second of dioxygen are consumed when the reaction is run
at 166. °C and the dioxygen is supplied at 0.29 atm. Calculate the rate at which sulfur dioxide is being produced. Give your answer in kilograms per second.
Round your answer to 2 significant digits.
0-
Transcribed Image Text:Most of the sulfur used in the United States is chemically synthesized from hydrogen sulfide gas recovered from natural gas wells. In the first step of this synthesis, called the Claus process, hydrogen sulfide gas is reacted with dioxygen gas to produce gaseous sulfur dioxide and water. Suppose a chemical engineer studying a new catalyst for the Claus reaction finds that 161. liters per second of dioxygen are consumed when the reaction is run at 166. °C and the dioxygen is supplied at 0.29 atm. Calculate the rate at which sulfur dioxide is being produced. Give your answer in kilograms per second. Round your answer to 2 significant digits. 0-
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 19 images

Blurred answer
Knowledge Booster
Ideal and Real Gases
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning