The bell crank is in equilibrium for the forces acting in rods (1) and (2). The bell crank is supported by a pin with a diameter of 14 mm at B that acts in single shear. The thickness of the bell crank is 7 mm. Assume a = 60 mm, b = 100 mm, F₁ = 1000 N, and 9 = 75°. Determine the average shear stress in pin B. Answer in MPa rounded-off to 2 decimal places. Bell crank (2)

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter8: Applications Of Plane Stress (pressure Vessels, Beams, And Combined Loadings)
Section: Chapter Questions
Problem 8.4.22P: , Solve the preceding problem using the numerical data: /) = 90mm, h = 280 mm, d = 210 mm, q = 14...
icon
Related questions
Question
The bell crank is in equilibrium for the forces acting in rods (1) and (2). The bell crank is
supported by a pin with a diameter of 14 mm at B that acts in single shear. The thickness of the
bell crank is 7 mm. Assume a = 60 mm, b = 100 mm, F₁ = 1000 N, and 9 = 75°. Determine the
average shear stress in pin B. Answer in MPa rounded-off to 2 decimal places.
Bell crank
(2)
m
Transcribed Image Text:The bell crank is in equilibrium for the forces acting in rods (1) and (2). The bell crank is supported by a pin with a diameter of 14 mm at B that acts in single shear. The thickness of the bell crank is 7 mm. Assume a = 60 mm, b = 100 mm, F₁ = 1000 N, and 9 = 75°. Determine the average shear stress in pin B. Answer in MPa rounded-off to 2 decimal places. Bell crank (2) m
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Transverse Shear
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning