The front 1.20 m of a 1,550-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. (a) If a car traveling 22.0 m/s stops uniformly in 1.20 m, how long does the collision last? (b) What is the magnitude of the average force on the car? (c) What is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity. Need Help? Read It Master it A1 160.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 400.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east. Before After (a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) m/s east What is the change in mechanical energy of the car-truck system in the collision? (c) Account for this change in mechanical energy.

icon
Related questions
Question
The front 1.20 m of a 1,550-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision.
(a) If a car traveling 22.0 m/s stops uniformly in 1.20 m, how long does the collision last?
(b) What is the magnitude of the average force on the car?
(c) What is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity.
Need Help?
Read It
Master It
A1 160.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 400.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is
18.000 m/s to the east.
Before
After
(a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.)
4.0
m/s east
(b) What is the change in mechanical energy
car-truck systemi
the collision?
(c) Account for this change in mechanical energy.
Transcribed Image Text:The front 1.20 m of a 1,550-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. (a) If a car traveling 22.0 m/s stops uniformly in 1.20 m, how long does the collision last? (b) What is the magnitude of the average force on the car? (c) What is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity. Need Help? Read It Master It A1 160.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 400.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east. Before After (a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) 4.0 m/s east (b) What is the change in mechanical energy car-truck systemi the collision? (c) Account for this change in mechanical energy.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer