The motion of spinning a hula hoop around one's hips can be modeled as a hoop rotating around an axis not through the center, but offset from the center by an amount h, where h is less than R, the radius of the hoop. Suppose Maria spins a hula hoop with a mass of 0.74 kg and a radius of 0.67 m around her waist. The rotation axis is perpendicular to the plane of the hoop, but approximately 0.45 m from the center of the hoop. (a) What is the rotational inertia of the hoop in this case? 0.45 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have mistake in your calculation. Carry out all intermediate results to at least four-digit. accuracy to minimize roundoff error. kg m² (b) If the hula hoop is rotating with an angular speed of 13.3 rad/s, what is its rotational kinetic energy? 0.74 x Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter13: Rotation Ii: A Conservation Approach
Section: Chapter Questions
Problem 27PQ: The motion of spinning a hula hoop around one's hips can bemodeled as a hoop rotating around an axis...
icon
Related questions
icon
Concept explainers
Topic Video
Question
The motion of spinning a hula hoop around one's hips can be modeled as a hoop rotating around an axis not through the center, but offset from the center by an amount h, where h is less than R, the
radius of the hoop. Suppose Maria spins a hula hoop with a mass of 0.74 kg and a radius of 0.67 m around her waist. The rotation axis is perpendicular to the plane of the hoop, but approximately
0.45 m from the center of the hoop.
(a) What is the rotational inertia of the hoop in this case?
0.45
X
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit
accuracy to minimize roundoff error. kg. m²
(b) If the hula hoop is rotating with an angular speed of 13.3 rad/s, what is its rotational kinetic energy?
0.74
X
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
Transcribed Image Text:The motion of spinning a hula hoop around one's hips can be modeled as a hoop rotating around an axis not through the center, but offset from the center by an amount h, where h is less than R, the radius of the hoop. Suppose Maria spins a hula hoop with a mass of 0.74 kg and a radius of 0.67 m around her waist. The rotation axis is perpendicular to the plane of the hoop, but approximately 0.45 m from the center of the hoop. (a) What is the rotational inertia of the hoop in this case? 0.45 X Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. kg. m² (b) If the hula hoop is rotating with an angular speed of 13.3 rad/s, what is its rotational kinetic energy? 0.74 X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning