Theory: No load Test of Three-phase Induction Motor The no load test is similar to the open circuit test on a transformer. It is performed to obtain the magnetizingbranch parameters (shunt parameters Rc and Xm) in the induction machine equivalent circuit. In this test, the motor is allowed to run with no-load at the rated voltage of rated frequency across its terminals. Machine will rotate at almost synchronous speed, which makes slip nearly equal to zero. This causes the equivalent rotor impedance to be very large (theoretically infinite neglecting the frictional and rotational losses). Therefore, the rotor equivalent impedance can be considered to be an open circuit which reduces the equivalent circuit diagram of the induction machine Fig. 1 (a) to the circuit as shown in Fig. 1 (d). www. R1 jx R2' jx 2' wm lo Ic Im Vph R2"((1-s)/s). Rc jxm > R1 jX 1 (a) lo R1+R2' (X1+X2') wm www Ic Vph Rc R2' jX2' wm yo lo Im jXm www Ic Vph Rc Vph jXm Im (b) lo 07 www Rc BR lo jXm EX Im (c) (d) Fig.1. Development of equivalent circuit of induction motor in open circuit test Experimental Procedure: 1. Connect the circuit as shown in the connection diagram in Figure 2. 127v U 11 U₁ A IM > 127v VLL1 V V No ° Shaft 127v VLL2 W 12 W A Fig. 2. Induction motor open circuit test 2. Start the motor by ensuring the shaft is at no load condition. 3. For starting, increase the voltage to reach rated voltage. 4. Note the readings of voltmeter, ammeter and wattmeter by carefully and fill them in table 1 5. Reduce the voltage to zero and turn the main switch off. Table 1: The measured parameters during open circuit test of the induction motor Parameter Measurement Value VLL 240 IL P1 P2 Pinput Report 1. Draw the circuit diagram of open circuit test. Give some explanations 2. Calculate the machine parameters that is can be obtained from No-Load test (Rc and Xm). 3. What is the power factor of the machine? Comment on its value. 4. Comment on the slip of the machine in this case. 5. What are the different losses that are present in an induction machine in this case?

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

vlll=240 il=0.1A P1=19W P2=19W PINPUT=38W Please solve question 2 and 3 of the report section 

Theory:
No load Test of Three-phase Induction Motor
The no load test is similar to the open circuit test on a transformer. It is performed to obtain the magnetizingbranch
parameters (shunt parameters Rc and Xm) in the induction machine equivalent circuit. In this test, the motor is
allowed to run with no-load at the rated voltage of rated frequency across its terminals.
Machine will rotate at almost synchronous speed, which makes slip nearly equal to zero. This causes the equivalent
rotor impedance to be very large (theoretically infinite neglecting the frictional and rotational losses). Therefore,
the rotor equivalent impedance can be considered to be an open circuit which reduces the equivalent circuit
diagram of the induction machine Fig. 1 (a) to the circuit as shown in Fig. 1 (d).
www.
R1
jx
R2'
jx
2'
wm
lo
Ic
Im
Vph
R2"((1-s)/s).
Rc
jxm
>
R1
jX
1
(a)
lo
R1+R2' (X1+X2')
wm
www
Ic
Vph
Rc
R2' jX2'
wm yo
lo
Im
jXm
www
Ic
Vph
Rc
Vph
jXm
Im
(b)
lo
07
www
Rc
BR
lo
jXm
EX
Im
(c)
(d)
Fig.1. Development of equivalent circuit of induction motor in open circuit test
Transcribed Image Text:Theory: No load Test of Three-phase Induction Motor The no load test is similar to the open circuit test on a transformer. It is performed to obtain the magnetizingbranch parameters (shunt parameters Rc and Xm) in the induction machine equivalent circuit. In this test, the motor is allowed to run with no-load at the rated voltage of rated frequency across its terminals. Machine will rotate at almost synchronous speed, which makes slip nearly equal to zero. This causes the equivalent rotor impedance to be very large (theoretically infinite neglecting the frictional and rotational losses). Therefore, the rotor equivalent impedance can be considered to be an open circuit which reduces the equivalent circuit diagram of the induction machine Fig. 1 (a) to the circuit as shown in Fig. 1 (d). www. R1 jx R2' jx 2' wm lo Ic Im Vph R2"((1-s)/s). Rc jxm > R1 jX 1 (a) lo R1+R2' (X1+X2') wm www Ic Vph Rc R2' jX2' wm yo lo Im jXm www Ic Vph Rc Vph jXm Im (b) lo 07 www Rc BR lo jXm EX Im (c) (d) Fig.1. Development of equivalent circuit of induction motor in open circuit test
Experimental Procedure:
1. Connect the circuit as shown in the connection diagram in Figure 2.
127v
U
11
U₁
A
IM
>
127v
VLL1
V
V
No
°
Shaft
127v
VLL2
W
12
W
A
Fig. 2. Induction motor open circuit test
2. Start the motor by ensuring the shaft is at no load condition.
3. For starting, increase the voltage to reach rated voltage.
4. Note the readings of voltmeter, ammeter and wattmeter by carefully and fill them in table 1
5. Reduce the voltage to zero and turn the main switch off.
Table 1: The measured parameters during open circuit test of the induction motor
Parameter Measurement
Value
VLL
240
IL
P1
P2
Pinput
Report
1. Draw the circuit diagram of open circuit test. Give some explanations
2. Calculate the machine parameters that is can be obtained from No-Load test (Rc and Xm).
3. What is the power factor of the machine? Comment on its value.
4. Comment on the slip of the machine in this case.
5. What are the different losses that are present in an induction machine in this case?
Transcribed Image Text:Experimental Procedure: 1. Connect the circuit as shown in the connection diagram in Figure 2. 127v U 11 U₁ A IM > 127v VLL1 V V No ° Shaft 127v VLL2 W 12 W A Fig. 2. Induction motor open circuit test 2. Start the motor by ensuring the shaft is at no load condition. 3. For starting, increase the voltage to reach rated voltage. 4. Note the readings of voltmeter, ammeter and wattmeter by carefully and fill them in table 1 5. Reduce the voltage to zero and turn the main switch off. Table 1: The measured parameters during open circuit test of the induction motor Parameter Measurement Value VLL 240 IL P1 P2 Pinput Report 1. Draw the circuit diagram of open circuit test. Give some explanations 2. Calculate the machine parameters that is can be obtained from No-Load test (Rc and Xm). 3. What is the power factor of the machine? Comment on its value. 4. Comment on the slip of the machine in this case. 5. What are the different losses that are present in an induction machine in this case?
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,