To cool the hot oil, an engineer has suggested that the oil be pumped through a pipe submerged in a nearby lake. The pipe (external diameter = 20 cm) will be placed in the horizontal direction. The temperature of the outer surface of the pipe averages 130 ° C. The surrounding water temperature is assumed to be constant at 10 ° C. Pipe length 100 m. If it is assumed that there is no water movement.    a. Determine the convective heat transfer coefficient of the outer pipe surface to the water. = Answer Watt / (m² ° C)    b. Determine the heat transfer rate from the pipe to the water. = Answer kW

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.55P
icon
Related questions
Question

To cool the hot oil, an engineer has suggested that the oil be pumped through a pipe submerged in a nearby lake. The pipe (external diameter = 20 cm) will be placed in the horizontal direction. The temperature of the outer surface of the pipe averages 130 ° C. The surrounding water temperature is assumed to be constant at 10 ° C. Pipe length 100 m. If it is assumed that there is no water movement.

 

 a. Determine the convective heat transfer coefficient of the outer pipe surface to the water. = Answer Watt / (m² ° C)

 

 b. Determine the heat transfer rate from the pipe to the water. = Answer kW

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning