Penny is adjusting the position of a stand up piano of mass mp = 155 kg in her living room. The piano is lp = 1.35 m in length. The piano is currently at an angle of θp = 36 degrees to the wall. Penny wants to rotate the piano across the carpeted floor so that it is flat up against the wall. To move the piano, Penny pushes on it at the point furthest from the wall. This piano does not have wheels, so you can assume that the friction between the piano and the rug acts at the center of mass of the piano. Randomized Variables mp = 155 kg lp = 1.35 m θp = 36 degrees a. Write an expression for the minimum magnitude of the force Fs in N Penny needs to exert on the piano to get it moving. Assume the corner of the piano on the wall doesn't slide and the static friction between the rug and the piano is μs.  b. The coefficient of kinetic friction between the carpet and the piano is μk = 0.27. Once the piano starts moving, calculate the torque τp in N⋅m that Penny needs to apply to keep moving the piano at a constant angular velocity.  c.  Calculate the amount of work Wp in J Penny does on the piano as she rotates it.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Penny is adjusting the position of a stand up piano of mass mp = 155 kg in her living room. The piano is lp = 1.35 m in length. The piano is currently at an angle of θp = 36 degrees to the wall. Penny wants to rotate the piano across the carpeted floor so that it is flat up against the wall. To move the piano, Penny pushes on it at the point furthest from the wall. This piano does not have wheels, so you can assume that the friction between the piano and the rug acts at the center of mass of the piano.

Randomized Variables

mp = 155 kg
lp = 1.35 m
θp = 36 degrees

a. Write an expression for the minimum magnitude of the force Fs in N Penny needs to exert on the piano to get it moving. Assume the corner of the piano on the wall doesn't slide and the static friction between the rug and the piano is μs

b. The coefficient of kinetic friction between the carpet and the piano is μk = 0.27. Once the piano starts moving, calculate the torque τp in N⋅m that Penny needs to apply to keep moving the piano at a constant angular velocity. 

c.  Calculate the amount of work Wp in J Penny does on the piano as she rotates it. 

172
T
ๆ
0
777
Transcribed Image Text:172 T ๆ 0 777
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 6 images

Blurred answer
Knowledge Booster
Basic Mechanics Problems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY