Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 11.1, Problem 11.2P
To determine

The all four matrix elements Hij' of the perturbation H'^=eEz between the ground state and the first excited states. Show that Hii'=0 for all five states

Blurred answer
Students have asked these similar questions
Starting with the equation of motion of a three-dimensional isotropic harmonic ocillator dp. = -kr, dt (i = 1,2,3), deduce the conservation equation dA = 0, dt where 1 P.P, +kr,r,. 2m (Note that we will use the notations r,, r2, r, and a, y, z interchangeably, and similarly for the components of p.)
Consider the function v(1,2) =( [1s(1) 3s(2) + 3s(1) 1s(2)] [x(1) B(2) + B(1) a(2)] Which of the following statements is incorrect concerning p(1,2) ? a. W(1,2) is normalized. Ob. The function W(1,2) is symmetric with respect to the exchange of the space and the spin coordinates of the two electrons. OC. y(1,2) is an eigenfunction of the reference (or zero-order) Hamiltonian (in which the electron-electron repulsion term is ignored) of Li with eigenvalue = -5 hartree. d. The function y(1,2) is an acceptable wave function to describe the properties of one of the excited states of Lit. Oe. The function 4(1,2) is an eigenfunction of the operator S,(1,2) = S;(1) + S,(2) with eigenvalue zero.
where and kyk₂ I 2 k 2m E 2 ħ² 2m ħ² (V-E) 3 Show that the solutions for region II can also be written as 2/₁₂ (²) = Ccas (₁₂²) + D sin (k₂²) for Z≤ 1W/ 4 Since the potential well Vez) is symmetrical, the possible eigen functions In You will be symmetrical, so Yn will be either even or odd. a) write down the even solution for region. II b) write down the odd solution region for on II In problem 2, explain why A=G=0₁
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning