Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 13, Problem 41AP

(a)

To determine

The magnitude of the relative acceleration as a function of m.

(a)

Expert Solution
Check Mark

Answer to Problem 41AP

The magnitude of the relative acceleration as a function of m is 2.77(1+m5.98×1024kg)m/s2.

Explanation of Solution

A object of mass m is distance from the Earth’s center is 1.20×107m.

Physics for Scientists and Engineers, Chapter 13, Problem 41AP

Figure I

Formula to calculate the relative acceleration is,

    arel=a1a2        (I)

Here, a1 is the acceleration of the object having mass m and a2 is the acceleration of the Earth.

Formula to calculate the gravitational force exerted by the object on the Earth is,

    F12=GMEmr2        (II)

Here, ME is the mass of the Earth, m is the mass of the object and r is the distance of object having mass m from the Earth center.

By Newton’s law the force exerted by the object is,

    F12=ma1        (III)

From equation (II) and equation (III) is,

    ma1=GMEmr2a1=GMEr2

The forces F12 and F21 both are gravitational force equal in magnitude and opposite in nature.

    F12=F21

Here, F21 is the force exerted by Earth on the object having mass m.

Substitute GMEmr2 for F12.

    GMEmr2=F21F21=GMEmr2        (IV)

By Newton’s law the force exerted by the Earth is,

    F21=MEa2        (V)

From equation (IV) and equation (V) is,

    MEa2=GMEmr2a2=Gmr2

Substitute Gmr2 for a2 and GMEr2 for a1 in equation (I).

    arel=GMEr2(Gmr2)

Substitute 5.972×1024kg for ME, 6.67×1011Nm2/kg2 for G and 1.20×107m for r to find arel.

    arel=6.67×1011Nm2/kg2×5.972×1024kg(1.20×107m)2(6.67×1011Nm2/kg2×m(1.20×107m)2)=2.77(1+m5.98×1024kg)m/s2        (VI)

Conclusion:

Therefore, the magnitude of the relative acceleration as a function of m is 2.77(1+m5.98×1024kg)m/s2.

(b)

To determine

The magnitude of the relative acceleration for m=5.00kg.

(b)

Expert Solution
Check Mark

Answer to Problem 41AP

The magnitude of the relative acceleration for m=5.00kg is 2.77m/s2.

Explanation of Solution

From equation (VI) the relative acceleration is,

    arel=2.77(1+m5.98×1024kg)m/s2

Substitute 5.00kg for m to find arel.

    arel=2.77(1+5.00kg5.98×1024kg)m/s2=2.77m/s2

Conclusion:

Therefore, the magnitude of the relative acceleration for m=5.00kg is 2.77m/s2.

(c)

To determine

The magnitude of the relative acceleration for m=2000kg.

(c)

Expert Solution
Check Mark

Answer to Problem 41AP

The magnitude of the relative acceleration for m=2000kg is 2.77m/s2.

Explanation of Solution

From equation (VI) the relative acceleration is,

    arel=2.77(1+m5.98×1024kg)m/s2

Substitute 5.00kg for m to find arel.

    arel=2.77(1+2000kg5.98×1024kg)m/s2=2.77m/s2

Conclusion:

Therefore, the magnitude of the relative acceleration for m=2000kg is 2.77m/s2.

(d)

To determine

The magnitude of the relative acceleration for m=2.00×1024kg.

(d)

Expert Solution
Check Mark

Answer to Problem 41AP

The magnitude of the relative acceleration for m=2.00×1024kg is 3.7m/s2.

Explanation of Solution

From equation (VI) the relative acceleration is,

    arel=2.77(1+m5.98×1024kg)m/s2

Substitute 5.00kg for m to find arel.

    arel=2.77(1+2.00×1024kg5.98×1024kg)m/s2=3.7m/s2

Conclusion:

Therefore, the magnitude of the relative acceleration for m=2.00×1024kg is 3.7m/s2.

(e)

To determine

The pattern of variation of relative acceleration with m.

(e)

Expert Solution
Check Mark

Answer to Problem 41AP

The relative acceleration is directly proportional to the mass m.

Explanation of Solution

From equation (VI) the relative acceleration is,

    arel=2.77(1+m5.98×1024kg)m/s2

This is the linear equation and shows the relative acceleration is directly proportional to the object having mass m. As m increases to become comparable to the mass of the Earth, the acceleration increases and can become arbitrarily large.

Conclusion:

Therefore, the relative acceleration is directly proportional to the object having mass m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A solid copper sphere of mass M and radius R has a cavity of radius ½ R. Inside the cavity a particle of mass m placed a distance d > R from the center of the sphere along the line connecting the centers of the sphere and the cavity. Find the gravitational force on m.
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 × 10* m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) 38107.8 m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 × 10“ m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 104 m/s relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar system (in m/s)? (Assume that the Earth and the point on Jupiter's orbit lie along the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.34 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 104 m/s relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar system (in m/s)? (Assume that the Earth and the point on Jupiter's orbit lie along the same…

Chapter 13 Solutions

Physics for Scientists and Engineers

Ch. 13 - A spacecraft in the shape of a long cylinder has a...Ch. 13 - An artificial satellite circles the Earth in a...Ch. 13 - Prob. 9PCh. 13 - A particle of mass m moves along a straight line...Ch. 13 - Use Keplers third law to determine how many days...Ch. 13 - Prob. 12PCh. 13 - Suppose the Suns gravity were switched off. The...Ch. 13 - (a) Given that the period of the Moons orbit about...Ch. 13 - How much energy is required to move a 1 000-kg...Ch. 13 - An object is released from rest at an altitude h...Ch. 13 - A system consists of three particles, each of mass...Ch. 13 - Prob. 18PCh. 13 - A 500-kg satellite is in a circular orbit at an...Ch. 13 - Prob. 20PCh. 13 - Prob. 21PCh. 13 - Prob. 22PCh. 13 - Ganymede is the largest of Jupiters moons....Ch. 13 - Prob. 24APCh. 13 - Voyager 1 and Voyager 2 surveyed the surface of...Ch. 13 - Prob. 26APCh. 13 - Prob. 27APCh. 13 - Why is the following situation impossible? A...Ch. 13 - Let gM represent the difference in the...Ch. 13 - Prob. 30APCh. 13 - Prob. 31APCh. 13 - Prob. 32APCh. 13 - Prob. 33APCh. 13 - Two spheres having masses M and 2M and radii R and...Ch. 13 - (a) Show that the rate of change of the free-fall...Ch. 13 - Prob. 36APCh. 13 - Studies of the relationship of the Sun to our...Ch. 13 - Review. Two identical hard spheres, each of mass m...Ch. 13 - Prob. 39APCh. 13 - Prob. 40APCh. 13 - Prob. 41APCh. 13 - Prob. 42APCh. 13 - As thermonuclear fusion proceeds in its core, the...Ch. 13 - Two stars of masses M and m, separated by a...Ch. 13 - The Solar and Heliospheric Observatory (SOHO)...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill