Astronomy
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 21E

How long would material take to go around if the solar nebula in Example 14.1 became the size of Earth’s orbit?

Blurred answer
Students have asked these similar questions
The gravitational collapse time for the Sun is a constraint on the timescale for the formation of the Solar System: Using the mass of the Sun and a 6.67 X10-11 in S.I. units (m, kg, sec) as the value for G, calculate the gravitational collapse time in millions of years for the mass of the Sun in a nebula with radius 4 light years. Recall that: ????????=√R^3/GM
9) An interstellar cloud fragment 0.2 light-year in diameter is rotating at a rate of one revolution per million years. It now begins to collapse. Assuming that the mass remains constant, estimate the cloud's rotation period when it has shrunk to (a) the size of the solar nebula, 100 AU across, and (b) the size of Earth's orbit, 2 AU across. (answers: 0.016 revolutions per year, and an orbital period of 62.5 years, This is 40 revolutions per year, and an orbital period of 0.025 years, or just a little over 9 days)
The gravitational collapse time for the Sun is a constraint on the timescale for the formation of the Solar System: Using the mass of the Sun and a 6.67 X10-11 in S.I. units (m, kg, sec) as the value for G, calculate the gravitational collapse time in millions of years for the mass of the Sun in a nebula with radius 4 light years. Recall that:   tgravity = square root (R^3/ GM)
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY