General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 15.104SP

(a)

Interpretation Introduction

Interpretation:

The change in solubility of Zn(OH)2 by the addition of HCl should be explained. Also a balanced net ionic equation for the dissolution reaction has to be written.

Le Chatelier's principle:

Le Chatelier's principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.

The concentrations of reactant and product are equal in equilibrium chemical reaction.  The effect of concentration, temperature and external pressure makes a change in equilibrium.  To counteract this, the chemical reaction is shifted to reactant or product side to attain equilibrium.

Solubility product constant:

The equilibrium constant of a more soluble ionic compound in water at the higher solubility is known as solubility product constant.

The equilibrium constant of more soluble ionic compound is given by Ksp and it is expressed by product of each ion present in the compound which are raised to the power of number respective ion present in the compound to give a maximum solubility of the compound.

MmXx(s) mMn+(aq) + xXy-(aq)Ksp = [Mn+]m[Xy-]x

Molar solubility:

Molar solubility (S) is given as solubility in moles per litre.

S =Solubilityingram1L×1molMolarmass(g)

(b)

Interpretation Introduction

Interpretation:

The change in solubility of Zn(OH)2 by the addition of KOH should be explained. Also a balanced net ionic equation for the dissolution reaction has to be written.

Concept Introduction:

Le Chatelier's principle:

Le Chatelier's principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.

The concentrations of reactant and product are equal in equilibrium chemical reaction.  The effect of concentration, temperature and external pressure makes a change in equilibrium.  To counteract this, the chemical reaction is shifted to reactant or product side to attain equilibrium.

Solubility product constant:

The equilibrium constant of a more soluble ionic compound in water at the higher solubility is known as solubility product constant.

The equilibrium constant of more soluble ionic compound is given by Ksp and it is expressed by product of each ion present in the compound which are raised to the power of number respective ion present in the compound to give a maximum solubility of the compound.

MmXx(s) mMn+(aq) + xXy-(aq)Ksp = [Mn+]m[Xy-]x

Molar solubility:

Molar solubility (S) is given as solubility in moles per litre.

S =Solubilityingram1L×1molMolarmass(g)

(c)

Interpretation Introduction

Interpretation:

The change in solubility of Zn(OH)2 by the addition of NaCN should be explained. Also a balanced net ionic equation for the dissolution reaction has to be written.

Concept Introduction:

Le Chatelier's principle:

Le Chatelier's principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.

The concentrations of reactant and product are equal in equilibrium chemical reaction.  The effect of concentration, temperature and external pressure makes a change in equilibrium.  To counteract this, the chemical reaction is shifted to reactant or product side to attain equilibrium.

Solubility product constant:

The equilibrium constant of a more soluble ionic compound in water at the higher solubility is known as solubility product constant.

The equilibrium constant of more soluble ionic compound is given by Ksp and it is expressed by product of each ion present in the compound which are raised to the power of number respective ion present in the compound to give a maximum solubility of the compound.

MmXx(s) mMn+(aq) + xXy-(aq)Ksp = [Mn+]m[Xy-]x

Molar solubility:

Molar solubility (S) is given as solubility in moles per litre.

S =Solubilityingram1L×1molMolarmass(g)

Blurred answer
Students have asked these similar questions
4. A solution prepared to be initially 1 M in NH3 and 0.5 M in HCl is (Kb for NH3 = 1.8 x 10¯5):   (A) a solution with a pH less than 7 that is not a buffer solution  (B) a buffer solution with a pH between 4 and 7  (C) a buffer solution with a pH between 7 and 10  (D) a solution with a pH greater than 7 that is not a buffer solution  (E) a solution with a pH of 7
A 50.0-mL volume of 0.50 MFe(NO₃)₃ is mixed with 125 mL of 0.25 M Cd(NO₃)₂.(a) If aqueous NaOH is added, which ion precipitates first?(b) Describe how the metal ions can be separated using NaOH.(c) Calculate the [OH⁻] that will accomplish the separation.
(4) A solution is made of a mixture of 0.500 M Calcium chloride and 0.0100 M iron (II) nitrate. The two metals are to be separated by precipitation by increasing the pH. (a) At what pH will the first metal begin to precipitate? (b) At what pH will 99.9% of the first metal be precipitated? (c) At what pH will the second metal begin to precipitate? (d) Can the metals be separated successfully?

Chapter 15 Solutions

General Chemistry: Atoms First

Ch. 15.4 - Suppose you are performing an experiment that...Ch. 15.4 - Prob. 15.12PCh. 15.6 - A 40.0 mL volume of 0.100 M HCl is titrated with...Ch. 15.6 - A 40.0 mL volume of 0.100 M NaOH is titrated with...Ch. 15.7 - The following pictures represent solutions at...Ch. 15.7 - Consider the titration of 100.0 mL of 0.016 M HOCl...Ch. 15.7 - The following acid-base indicators change color in...Ch. 15.9 - Assume that 40.0 mL of 0.0800 M H2SO3 (Ka1 = 1.5 ...Ch. 15.9 - Assume that 40.0 mL of a 0.0250 M solution of the...Ch. 15.10 - Write the equilibrium-constant expression for Ksp...Ch. 15.11 - A saturated solution of Ca3(PO4)2 has [Ca2+] =...Ch. 15.11 - Prob. 15.22PCh. 15.11 - Which has the greater molar solubility: AgCl with...Ch. 15.11 - Prob. 15.24CPCh. 15.12 - Calculate the molar solubility of MgF2 in 0.10 M...Ch. 15.12 - Which of the following compounds are more soluble...Ch. 15.12 - In an excess of NH3(aq), Cu2+ ion forms a deep...Ch. 15.12 - Silver bromide dissolves in aqueous sodium...Ch. 15.13 - Prob. 15.29PCh. 15.13 - Will a precipitate form on mixing 25 mL of 1.0 ...Ch. 15.14 - Prob. 15.31PCh. 15.15 - Prob. 15.32PCh. 15 - The following pictures represent solutions that...Ch. 15 - The following pictures represent solutions that...Ch. 15 - The strong acid HA is mixed with an equal molar...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - Prob. 15.40CPCh. 15 - Prob. 15.41CPCh. 15 - Prob. 15.42CPCh. 15 - Prob. 15.43CPCh. 15 - Is the pH greater than, equal to, or less than 7...Ch. 15 - Prob. 15.45SPCh. 15 - Which of the following mixtures has the higher pH?...Ch. 15 - Which of the following mixtures has the lower pH?...Ch. 15 - Phenol (C6H5OH, Ka = 1.3 1010) is a weak acid...Ch. 15 - Aniline (C6H5NH2, Kb = 4.3 1010) is a weak base...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - Prob. 15.52SPCh. 15 - Does the pH increase, decrease, or remain the same...Ch. 15 - Prob. 15.54SPCh. 15 - Calculate the pH of a solution prepared by mixing...Ch. 15 - Prob. 15.56SPCh. 15 - The pH of a solution of NH3 and NH4Br is 8.90....Ch. 15 - Prob. 15.58SPCh. 15 - Prob. 15.59SPCh. 15 - Prob. 15.60SPCh. 15 - Which of the following gives a buffer solution...Ch. 15 - Prob. 15.62SPCh. 15 - Prob. 15.63SPCh. 15 - Calculate the pH of a buffer solution that is 0.20...Ch. 15 - Prob. 15.65SPCh. 15 - Calculate the pH of 0.250 L of a 0.36 M formic...Ch. 15 - Calculate the pH of0.375 L of a 0.18 M acetic...Ch. 15 - Prob. 15.68SPCh. 15 - Use the HendersonHasselbalch equation to calculate...Ch. 15 - Prob. 15.70SPCh. 15 - Give a recipe for preparing a CH3CO2HCH3CO2Na...Ch. 15 - Prob. 15.72SPCh. 15 - Prob. 15.73SPCh. 15 - What is the Ka of the amino acid leucine if it is...Ch. 15 - Prob. 15.75SPCh. 15 - Prob. 15.76SPCh. 15 - Make a rough plot of pH versus milliliters of acid...Ch. 15 - Prob. 15.78SPCh. 15 - Consider the titration of 50.0 mL of 0.116 M NaOH...Ch. 15 - Consider the titration of 40.0 mL of 0.250 M HF...Ch. 15 - A 100.0 mL sample of 0.100 M methylamine (CH3NH2,...Ch. 15 - Prob. 15.82SPCh. 15 - Consider the titration of 25.0 mL of 0.0200 M...Ch. 15 - Prob. 15.84SPCh. 15 - The equivalence point was reached in titrations of...Ch. 15 - Prob. 15.86SPCh. 15 - What is the pH at the equivalence point for the...Ch. 15 - Prob. 15.88SPCh. 15 - Prob. 15.89SPCh. 15 - Prob. 15.90SPCh. 15 - Prob. 15.91SPCh. 15 - Prob. 15.92SPCh. 15 - Prob. 15.93SPCh. 15 - Prob. 15.94SPCh. 15 - Prob. 15.95SPCh. 15 - Prob. 15.96SPCh. 15 - Prob. 15.97SPCh. 15 - Use Le Chteliers principle to explain the...Ch. 15 - Use Le Chteliers principle to predict whether the...Ch. 15 - Calculate the molar solubility of PbCrO4 in:...Ch. 15 - Calculate the molar solubility of SrF2 in:...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Prob. 15.104SPCh. 15 - Is the solubility of Fe(OH)3 increased, decreased,...Ch. 15 - Prob. 15.106SPCh. 15 - Prob. 15.107SPCh. 15 - Prob. 15.108SPCh. 15 - Prob. 15.109SPCh. 15 - Calculate the molar solubility of AgI in: (a)Pure...Ch. 15 - Calculate the molar solubility of Cr(OH)3 in 0.50...Ch. 15 - What compound, if any, will precipitate when 80 mL...Ch. 15 - Prob. 15.113SPCh. 15 - Prob. 15.114SPCh. 15 - In qualitative analysis, Al3+ and Mg2+ are...Ch. 15 - Prob. 15.116SPCh. 15 - Can Co2+ be separated from Zn2+ by bubbling H2S...Ch. 15 - Prob. 15.118SPCh. 15 - Prob. 15.119SPCh. 15 - Prob. 15.120SPCh. 15 - Give a method for separating the following pairs...Ch. 15 - Assume that you have three white solids: NaCl,...Ch. 15 - On the same graph, sketch pH titration curves for...Ch. 15 - Prob. 15.124CHPCh. 15 - Prob. 15.125CHPCh. 15 - A saturated solution of Mg(OH)2 in water has pH =...Ch. 15 - Prob. 15.128CHPCh. 15 - In qualitative analysis, Ag+, Hg22+, and Pb2+ are...Ch. 15 - Calculate the molar solubility of MnS in a 0.30 M...Ch. 15 - Prob. 15.131CHPCh. 15 - Prob. 15.132CHPCh. 15 - Prob. 15.133CHPCh. 15 - Prob. 15.134CHPCh. 15 - Prob. 15.135CHPCh. 15 - A 100.0 mL sample of a solution that is 0.100 M in...Ch. 15 - A 0.0100 mol sample of solid Cd(OH)2 (Ksp = 5.3 ...Ch. 15 - Zinc hydroxide, Zn(OH)2 (Ksp = 4.1 1017), is...Ch. 15 - Prob. 15.139CHPCh. 15 - Prob. 15.140MPCh. 15 - Ethylenediamine (NH2CH2CH2NH2, abbreviated en) is...Ch. 15 - A 40.0 mL sample of a mixture of HCl and H3PO4 was...Ch. 15 - A 1.000 L sample of HCl gas at 25 C and 732.0 mm...Ch. 15 - Prob. 15.144MPCh. 15 - Consider the reaction that occurs on mixing 50.0...Ch. 15 - In qualitative analysis, Ca2+ and Ba2+ are...Ch. 15 - A railroad tank car derails and spills 36 tons of...Ch. 15 - Prob. 15.148MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY