Astronomy
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
bartleby

Concept explainers

Textbook Question
Book Icon
Chapter 15, Problem 22E

The edge of the Sun doesn’t have to be absolutely sharp in order to look that way to us. It just has to go from being transparent to being completely opaque in a distance that is smaller than your eye can resolve. Remember from Astronomical Instruments that the ability to resolve detail depends on the size of the telescope’s aperture. The pupil of your eye is very small relative to the size of a telescope and therefore is very limited in the amount of detail you can see. In fact, your eye cannot see details that are smaller than 1/30 of the diameter of the Sun (about 1 arcminute). Nearly all the light from the Sun emerges from a layer that is only about 400 km thick. What fraction is this of the diameter of the Sun? How does this compare with the ability of the human eye to resolve detail? Suppose we could see light emerging directly from a layer that was 300,000 km thick. Would the Sun appear to have a sharp edge?

Blurred answer
Students have asked these similar questions
An astronomer wants to design an infrared telescope with an angular resolution of 1.5 arcseconds at a wavelength (L, in our equation) of 20 micrometers. What would be the diameter (D) of the mirror they would need to make?
What are the three basic components of a modern astronomical instrument? Describe each in one to two sentences. (Select all that apply.) a magnifier, which increases the size of the image a motor, which allows the telescope to track sorces as they move a detector, which senses and records the radiation an eyepiece, where an astronomer can view the image created a telescope, which collects radiation a device which sorts radiation by wavelength K
In the graph below, the yellow region shows the AM 1.5 solar spectrum. The area indicated by the blue area represents the AM 1.0 spectrum. The boundaries of the AM 1.0 spectrum; When λ = between 250nm and 1000nm Pλ = 1x109Wm^(-2) m^(-1) When λ = between 1000nm and 2000nm Pλ = 0.25x109W m^(-2) m^(-1) In that case; a-) Find the radiation intensity (I) and photon flux () for AM 1.0. b-) If the radiation intensity in the option a comes to the silicon solar cell with a band gap of 1.12eV, how much will the photo-current be produced?

Chapter 15 Solutions

Astronomy

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage