An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
Question
Book Icon
Chapter 2.4, Problem 22P

(a)

To determine

To Find: The different microstates for the system of two identical Einstein solids.

(b)

To determine

To Find: In combined system find the approximate expression for total number of microstates.

(c)

To determine

To Find: In combined system find the approximate expression for the multiplicity of microstates.

(d)

To determine

To Find: The fraction of microstates having large probabilities.

Blurred answer
Students have asked these similar questions
a) Make a diagram showing how many distinct ways (how many microstates, the multiplicity) there are of putting q = 2 indistinguishable objects in N = 3 boxes. Assuming that all microstates are equally probable, what is the probability that both objects are in the left-most box? What is the correct formula for the mulitiplicity as a function of N and q? b) Make a diagram showing how many distinct ways (the multiplicity) there are of putting q = 2 distinguishable objects in N= 3 boxes. Assuming that all microstates are equally probable, what is the probability that both objects are in the left-most box? Label the two objects R and G. What is the correct formula for the mulitiplicity as a function of N and q? Below are the diagrams, started for you. Complete the diagrams. distinguishable indistinguishable RG •. !R !G
Consider N identical harmonic oscillators (as in the Einstein floor). Permissible Energies of each oscillator (E = n h f (n = 0, 1, 2 ...)) 0, hf, 2hf and so on. A) Calculating the selection function of a single harmonic oscillator. What is the division of N oscillators? B) Obtain the average energy of N oscillators at temperature T from the partition function. C) Calculate this capacity and T-> 0 and At T-> infinity limits, what will the heat capacity be? Are these results consistent with the experiment? Why? What is the correct theory about this? D) Find the Helmholtz free energy from this system. E) Derive the expression that gives the entropy of this system for the temperature.
The Einstein model for a solid assumes the system consists of 3N independent simple harmonic oscillators with frequencies &. Within these assumptions, the heat capacity at constant volume as: Cv=3Nk() (-1)² ² Complete the table for the molar heat capacity at various temperatures under either the Einstein model or high-temperature limit. You might like to use the Wolfram Alpha calculator to do the numerical calculations more easily. Use k-0.695 cm /K. High temperature limit value of molar heat capacity of metal is T 1 K 10 K 50 K -1 Einstein, = 100 cm Einstein, : = 500 cm 1.4021 3.8991 100 K 500 K 2.434E-4 1000 K 6.1499 2434E-4 kJ/mol.

Chapter 2 Solutions

An Introduction to Thermal Physics

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning