Mathematical Methods in the Physical Sciences
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9.1, Problem 3P

The speed of light in a medium of index of refraction n is v = d s / d t = c / n . Then the time of transit from A to B is t = A B d t = c 1 A B n d s . By Fermat’s principle above, t is stationary. If the path consists of two straight line segments with n constant over each segment, then      A B n d s = n 1 d 1 + n 2 d 2 and the problem can be done by ordinary calculus. solve the following problems:

Show that the actual path is not necessarily one of minimum time. Hint: In the diagram, A is a source of light; C D is a cross section of a reflecting surface, c and B is a point to which a light ray is to be reflected. A P B is to be the actual path and A P B , A P B represent varied paths. Then show that the varied paths:

Chapter 9.1, Problem 3P, The speed of light in a medium of index of refraction n is v=ds/dt=c/n. Then the time of transit

(a) Are the same length as the actual path if C D is an ellipse with A and B as foci.

(b) Are longer than the actual path if C D is a line tangent at P to the ellipse in (a).

(c) Are shorter than the actual path if C D is an are of a curve tangent to the ellipse at P and lying inside it. Note that in this case the time is a maximum!

(d) Are longer on one side and shorter on the other if C D crosses the ellipse at P but is tangent to it (that is, C D has a point of inflection at P ).

Blurred answer

Chapter 9 Solutions

Mathematical Methods in the Physical Sciences

Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Find the geodesics on a plane using polar...Ch. 9.3 - Prob. 16PCh. 9.3 - Find the geodesics on the cone x2+y2=z2. Hint: Use...Ch. 9.3 - Find the geodesics on a sphere. Hints: Use...Ch. 9.4 - Verify equations (4.2).Ch. 9.4 - Show, in Figure 4.4, that for a point like...Ch. 9.4 - In the brachistochrone problem, show that if the...Ch. 9.4 - Consider a rapid transit system consisting of...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.5 - (a) Consider the case of two dependent variables....Ch. 9.5 - Set up Lagranges equations in cylindrical...Ch. 9.5 - Do Problem 2 in spherical coordinates.Ch. 9.5 - Use Lagranges equations to find the equation of...Ch. 9.5 - Find the equation of motion of a particle moving...Ch. 9.5 - A particle moves on the surface of a sphere of...Ch. 9.5 - Prove that a particle constrained to stay on a...Ch. 9.5 - Two particles each of mass m are connected by an...Ch. 9.5 - A mass m moves without friction on the surface of...Ch. 9.5 - Do Example 3 above, using cylindrical coordinates...Ch. 9.5 - A yo-yo (as shown) falls under gravity. Assume...Ch. 9.5 - Find the Lagrangian and Lagranges equations for a...Ch. 9.5 - A particle moves without friction under gravity on...Ch. 9.5 - 2A hoop of mass M and radius a rolls without...Ch. 9.5 - Generalize Problem 14 to any mass M of circular...Ch. 9.5 - Find the Lagrangian and the Lagrange equation for...Ch. 9.5 - A simple pendulum (Problem 4) is suspended from a...Ch. 9.5 - A hoop of mass m in a vertical plane rests on a...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.6 - In Problems 1 and 2, given the length l of a curve...Ch. 9.6 - In Problems 1 and 2, given the length l of a curve...Ch. 9.6 - Given 10 cc of lead, find how to form it into a...Ch. 9.6 - Prob. 4PCh. 9.6 - A curve y=y(x), joining two points x1 and x2 on...Ch. 9.6 - In Problem 5, given the volume, find the shape of...Ch. 9.6 - Integrate (6.2), simplify the result and integrate...Ch. 9.8 - (a) In Section 3, we showed how to obtain a first...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Find the geodesics on the cylinder r=1+cos.Ch. 9.8 - Prob. 9MPCh. 9.8 - Find the geodesics on the parabolic cylinder y=x2.Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - Find Lagranges equations in polar coordinates for...Ch. 9.8 - Repeat Problem 19 if V=K/r.Ch. 9.8 - Write Lagranges equations in cylindrical...Ch. 9.8 - In spherical coordinates, find the Lagrange...Ch. 9.8 - A particle slides without friction around a...Ch. 9.8 - Write and simplify the Euler equation to make...Ch. 9.8 - Prob. 25MPCh. 9.8 - A wire carrying a uniform distribution of positive...Ch. 9.8 - Find a first integral of the Euler equation for...Ch. 9.8 - Write the Lagrange equation for a particle moving...

Additional Math Textbook Solutions

Find more solutions based on key concepts
Checkpoint1 Use the substitution method to solve this system: Answers to Checkpoint exercises are found at the...

Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)

ASSESSMENT Each of the following sequences is either arithmetic or geometric. Identify the sequences 230,193+82...

A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)

The equivalent expression of x(y+z) by using the commutative property.

Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)

Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY