Tyrosine kinase receptors are pairs of proteins that span the plasma membrane. On the extracellular side of the membrane, one or more sites are present that bind to signaling ligands such as insulin or growth factors. On the intracellular side, the ena of peptide chains on each protein phosphorylate the other member of the pair, providing active docking sites that initiate cellular responses. The signal is switched off by dissociation of the ligand. For each ligand-receptor system, the equilibrium constant, k, controls the distribution of receptor-bound and unbound ligands. In systems with large values of k, a site is likely to be occupied, even at low concentrations of ligand. When k is small, the likelihood of binding is low, even when the concentration of ligand is high. To initiate a new stimulus response cycle for the receptor, the ligand must dissociate. Larger values of k mean that the receptor is more likely to be occupied and thus unavailable to bind another ligand. Some ligand- binding systems have multiple binding sites. For example, hemoglobin binds four oxygen molecules, whereas myoglobin has only a single binding site. When multiple binding sites are present, the presence of an already-bound ligand can cooperatively affect the binding of other ligands on the same protein. For hemoglobin, the binding is positively cooperative. The affinity of oxygen for heme increases as the number of bound oxygen molecules increases. Part A: Describe the features in this graph for hemoglobin that demonstrate positive cooperativity.

Biology 2e
2nd Edition
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:Matthew Douglas, Jung Choi, Mary Ann Clark
Chapter9: Cell Communication
Section: Chapter Questions
Problem 1VCQ: Figure 9.8 HER2 is a receptor tyrosine kinase. In 30 percent of human breast cancers, HER2 is...
icon
Related questions
Question
liges
3. Tyrosine kinase receptors are pairs of proteins that span the plasma membrane. On the extracellular side of the membrane, one or more sites are present that bind to signaling ligands such as insulin or growth factors. On the intracellular side, the enas
of peptide chains on each protein phosphorylate the other member of the pair, providing active docking sites that initiate cellular responses. The signal is switched off by dissociation of the ligand. For each ligand-receptor system, the equilibrium
constant, k, controls the distribution of receptor-bound and unbound ligands. In systems with large values of k, a site is likely to be occupied, even at low concentrations of ligand. When k is small, the likelihood of binding is low, even when the
concentration of ligand is high. To initiate a new stimulus response cycle for the receptor, the ligand must dissociate. Larger values of k mean that the receptor is more likely to be occupied and thus unavailable to bind another ligand. Some ligand-
binding systems have multiple binding sites. For example, hemoglobin binds four oxygen molecules, whereas myoglobin has only a single binding site. When multiple binding sites are present, the presence of an already-bound ligand can cooperatively
affect the binding of other ligands on the same protein. For hemoglobin, the binding is positively cooperative. The affinity of oxygen for heme increases as the number of bound oxygen molecules increases.
Part A: Describe the features in this graph for hemoglobin that demonstrate positive cooperativity.
Number of sites bound
0
Concentration of ligand
Hemoglobin (positive cooperativity)
k = 10 (negative cooperativity)
Myoglobin
k = 1 (negative cooperativity)
k = 0.01 (negative cooperativity)
Transcribed Image Text:liges 3. Tyrosine kinase receptors are pairs of proteins that span the plasma membrane. On the extracellular side of the membrane, one or more sites are present that bind to signaling ligands such as insulin or growth factors. On the intracellular side, the enas of peptide chains on each protein phosphorylate the other member of the pair, providing active docking sites that initiate cellular responses. The signal is switched off by dissociation of the ligand. For each ligand-receptor system, the equilibrium constant, k, controls the distribution of receptor-bound and unbound ligands. In systems with large values of k, a site is likely to be occupied, even at low concentrations of ligand. When k is small, the likelihood of binding is low, even when the concentration of ligand is high. To initiate a new stimulus response cycle for the receptor, the ligand must dissociate. Larger values of k mean that the receptor is more likely to be occupied and thus unavailable to bind another ligand. Some ligand- binding systems have multiple binding sites. For example, hemoglobin binds four oxygen molecules, whereas myoglobin has only a single binding site. When multiple binding sites are present, the presence of an already-bound ligand can cooperatively affect the binding of other ligands on the same protein. For hemoglobin, the binding is positively cooperative. The affinity of oxygen for heme increases as the number of bound oxygen molecules increases. Part A: Describe the features in this graph for hemoglobin that demonstrate positive cooperativity. Number of sites bound 0 Concentration of ligand Hemoglobin (positive cooperativity) k = 10 (negative cooperativity) Myoglobin k = 1 (negative cooperativity) k = 0.01 (negative cooperativity)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax