Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 6P

(a)

To determine

The longest wavelength corresponding to a transition of photon’s energy.

(a)

Expert Solution
Check Mark

Answer to Problem 6P

The longest wavelength corresponding to a transition of photon’s energy is 1.89eV.

Explanation of Solution

The longest wavelength of the photon implies lowest frequency and smallest energy. The electron makes a transition from n=3 to n=2.

Write the expression for energy emitted by the electron in a transition from n=3 to n=2.

  ΔE=13.6eVn2+13.6eVn2

Here, ΔE is the energy and n is the transition state of electron.

Conclusion:

The energy emitted by the electron in a transition from n=3 to n=2.

  ΔE=13.6eV32+13.6eV22=1.89eV

Therefore, the longest wavelength corresponding to a transition of photon’s energy is 1.89eV.

(b)

To determine

The longest wavelength of the corresponding transition.

(b)

Expert Solution
Check Mark

Answer to Problem 6P

The longest wavelength of the corresponding transition is 656nm.

Explanation of Solution

Write the expression from the relation between frequency and wavelength.

  λ=cf        (I)

Here, λ is the longest wavelength of the photon, c is the velocity of light, and f is the frequency.

Write the expression for photon’s energy.

  ΔE=hf        (II)

Here, ΔE is the photon’s energy between the corresponding transitions and h is the plank’s constant.

Rewrite the equation (II) for frequency.

  f=ΔEh        (III)

Conclusion:

Substitute equation (III) in equation (I).

  λ=hcΔE

Substitute 6.626×1034Js for h, 3×108m/s for c, and 1.89eV for ΔE in the above equation to find λ.

  λ=(6.626×1034Js)(3×108m/s)(1.89eV)=19.878×1026Jm(6.242×1018eV1J)(1.89eV)=1240eVnm1.89eV=656nm

This is the red Balmer alpha line, which gives its characteristic color to the chromospheres of the sun and to photograph of the Orion nebula.

Therefore, the longest wavelength of the corresponding transition is 656nm.

(c)

To determine

The shortest wavelength corresponding to a transition of photon’s energy.

(c)

Expert Solution
Check Mark

Answer to Problem 6P

The shortest wavelength corresponding to a transition of photon’s energy is 3.40eV.

Explanation of Solution

The shortest wavelength of the photon implies highest frequency and greatest energy. The electron makes a transition from n= to n=2.

Write the expression for energy emitted by the electron in a transition from n= to n=2.

  ΔE=13.6eVn2+13.6eVn2

Here, ΔE is the energy and n is the transition state of electron.

Conclusion:

The energy emitted by the electron in a transition from n= to n=2.

  ΔE=13.6eV+13.6eV22=3.40eV

Therefore, the shortest wavelength corresponding to a transition of photon’s energy is 3.40eV.

(d)

To determine

The shortest wavelength of the corresponding transition.

(d)

Expert Solution
Check Mark

Answer to Problem 6P

The shortest wavelength of the corresponding transition is 365nm.

Explanation of Solution

Write the expression from the relation between frequency and wavelength.

  λ=cf

Here, λ is the shortest wavelength of the photon, c is the velocity of light, and f is the frequency.

Write the expression for photon’s energy.

  ΔE=hf

Here, ΔE is the photon’s energy between the corresponding transitions and h is the plank’s constant.

Rewrite the equation (II) for frequency.

  f=ΔEh

Conclusion:

Substitute equation (III) in equation (I).

  λ=hcΔE

Substitute 6.626×1034Js for h, 3×108m/s for c, and 3.40eV for ΔE in the above equation to find λ.

  λ=(6.626×1034Js)(3×108m/s)(3.40eV)=19.878×1026Jm(6.242×1018eV1J)(3.40eV)=1240eVnm3.40eV=365nm

Therefore, the smallest wavelength of the corresponding transition is 365nm.

(e)

To determine

The shortest possible wavelength in the Balmer series.

(e)

Expert Solution
Check Mark

Answer to Problem 6P

The shortest possible wavelength in the Balmer series is 365nm.

Explanation of Solution

The transition limit in Balmer series is from n= to n=2, and their shortest possible wavelength is 365nm, it is nearly equal to ultraviolet.

Conclusion:

Therefore, the shortest possible wavelength in the Balmer series is 365nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A triply ionized beryllium atom is in the ground state. It absorbs and makes a transition to the n=8 excited state. The ion returns to the ground state by emitting seven photons only. What is the wavelength of the second lowest energy photon.
The Balmer series for the hydrogen atom corresponds to electronic transitions that terminate in the state with quantum number n = 2 as shown. Consider the photon of longest wavelength corresponding to a transition shown in the figure. Determine (a) its energy and (b) its wavelength. Consider the spectral line of shortest wavelength corresponding to a transition shown in the figure. Find (c) its photon energy and (d) its wavelength. (e) What is the shortest possible wavelength in the Balmer series?
A photon with a wavelength of 410 nm has energy Ephoton = 3.0 eV. Do you expect to see a spectral line with λ = 410 nm in the emission spectrum of the atom represented by this energy-level diagram? If so, what transition or transitions will emit it? Do you expect to see a spectral line with λ = 410 nm in the absorption spectrum? If so, what transition or transitions will absorb it?

Chapter 29 Solutions

Principles of Physics: A Calculus-Based Text

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning