Wild-type mice have brown fur and short tails. Loss of function of a particular gene produces white fur, while loss of function of another gene produces long tails, and loss of function at a third locus produces agitated behavior. Each of these loss of function alleles is recessive. If a wild-type mouse is crossed with a triple mutant, and their F1 progeny is test-crossed, the following recombination frequencies are observed among their progeny. Produce a genetic map for these loci. Brown, short tailed, normal: 955 White, short tailed, normal: 16 Brown, short tailed, agitated: 0 White, short tailed, agitated: 36 Brown, long tailed, normal: White, long tailed, normal: Brown, long tailed, agitated: 46 0 14 White, long tailed, agitated: 933

Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:Elaine N. Marieb, Katja N. Hoehn
Chapter1: The Human Body: An Orientation
Section: Chapter Questions
Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,...
icon
Related questions
Question
Wild-type mice have brown fur and short tails. Loss of function of a particular gene
produces white fur, while loss of function of another gene produces long tails, and loss
of function at a third locus produces agitated behavior. Each of these loss of function
alleles is recessive. If a wild-type mouse is crossed with a triple mutant, and their F1
progeny is test-crossed, the following recombination frequencies are observed among
their progeny. Produce a genetic map for these loci.
Brown, short tailed, normal: 955
White, short tailed, normal:
16
Brown, short tailed, agitated: 0
White, short tailed, agitated: 36
Brown, long tailed, normal:
White, long tailed, normal:
Brown, long tailed, agitated:
46
0
14
White, long tailed, agitated: 933
Transcribed Image Text:Wild-type mice have brown fur and short tails. Loss of function of a particular gene produces white fur, while loss of function of another gene produces long tails, and loss of function at a third locus produces agitated behavior. Each of these loss of function alleles is recessive. If a wild-type mouse is crossed with a triple mutant, and their F1 progeny is test-crossed, the following recombination frequencies are observed among their progeny. Produce a genetic map for these loci. Brown, short tailed, normal: 955 White, short tailed, normal: 16 Brown, short tailed, agitated: 0 White, short tailed, agitated: 36 Brown, long tailed, normal: White, long tailed, normal: Brown, long tailed, agitated: 46 0 14 White, long tailed, agitated: 933
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Human Anatomy & Physiology (11th Edition)
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:
9780815344322
Author:
Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:
W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:
9781260159363
Author:
Martin, Terry R., Prentice-craver, Cynthia
Publisher:
McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Inquiry Into Life (16th Edition)
Biology
ISBN:
9781260231700
Author:
Sylvia S. Mader, Michael Windelspecht
Publisher:
McGraw Hill Education