Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
bartleby

Concept explainers

Question
Book Icon
Chapter 2, Problem 2.38P

(a)

To determine

Show that the wave function of a particle in the infinite square well returns to its original form after quantum revival time Ψ(x,t)=Ψ(x,0).

(b)

To determine

The revival time, for a particle of energy bouncing back and forth between the walls.

(c)

To determine

Show that the energy of the two revival times equals.

Blurred answer
Students have asked these similar questions
A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? m
Suppose a particle of mass m is attached to a well of infinite potential.   a) Show that the wave function returns to its original form after a time T = 4ma2/πℏ, i.e.,Ψ(psi)(x, T) = Ψ(psi)(x, 0) for any state (not just stationary states).b) What would be the classical equivalent of T, for a particle of energy E that bounces periodically betweenthe walls of potential?c) For what energy are both times (classical and quantum) equal?
(a) Consider the following wave function of Quantum harmonic oscillator: 3 4 V(x, t) = =Vo(x)e¯iEot +. Where, Eo, E, are the energy values corresponding to the ground state and the first excited state. Show that the expectation value of î in this state is periodic in time. What is the period? (b) Consider a quantum harmonic oscillator. The operator â4 is defined by : mw 1 â4 = 2h d: 2ħmw Find the expectation value of Hamiltonian for the state â4,(x). ma 1/4,- x2 and , (x) = - mw ma, x2 [Given ,(x) = () mw1/4 2mw x: 1. πή
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning