General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
Question
Book Icon
Chapter 10, Problem 10.37SP

(a)

Interpretation Introduction

Interpretation:

The largest dispersion force among Ethane and octane has to be given.

Concept Introduction:

Intermolecular forces:

Intermolecular forces are like cohesive forces, acting between the molecules.  The overall stability of a compound depends on how strong the molecules are held together. Intermolecular force is concerned about the overall stability of a substance.  A stable substance has stronger intermolecular forces.

London dispersion force:

London dispersion forces exist in non-polar compounds whereas dipole-dipole forces exist in polar covalent compounds.  Dipole-dipole force is stronger than London dispersion force.  Both polar and non-polar covalent compounds have London dispersion forces.  These forces are due to temporary dipoles and do not exist permanently.  The molecules convert to dipoles instantly and disappear.  This is due to the uneven distribution of electrons between their atoms occurs momentarily when the bonded electrons approach nucleus.  Thus it is a weakest force.

Larger size molecules have lesser interaction between nuclei and electrons.  Thus the electrons are free from nuclear force of attraction and easily form dipoles.  Thus, larger the size of the molecules, higher is the strength of London dispersion force.

(b)

Interpretation Introduction

Interpretation:

The largest dispersion force among HCl and HI has to be given.

Concept Introduction:

Intermolecular forces:

Intermolecular forces are like cohesive forces, acting between the molecules.  The overall stability of a compound depends on how strong the molecules are held together. Intermolecular force is concerned about the overall stability of a substance.  A stable substance has stronger intermolecular forces.

London dispersion force:

London dispersion forces exist in non-polar compounds whereas dipole-dipole forces exist in polar covalent compounds.  Dipole-dipole force is stronger than London dispersion force.  Both polar and non-polar covalent compounds have London dispersion forces.  These forces are due to temporary dipoles and do not exist permanently.  The molecules convert to dipoles instantly and disappear.  This is due to the uneven distribution of electrons between their atoms occurs momentarily when the bonded electrons approach nucleus.  Thus it is a weakest force.

Larger size molecules have lesser interaction between nuclei and electrons.  Thus the electrons are free from nuclear force of attraction and easily form dipoles.  Thus, larger the size of the molecules, higher is the strength of London dispersion force.

(d)

Interpretation Introduction

Interpretation:

The largest dispersion force among H2O and H2Se has to be given.

Concept Introduction:

Intermolecular forces:

Intermolecular forces are like cohesive forces, acting between the molecules.  The overall stability of a compound depends on how strong the molecules are held together. Intermolecular force is concerned about the overall stability of a substance.  A stable substance has stronger intermolecular forces.

London dispersion force:

London dispersion forces exist in non-polar compounds whereas dipole-dipole forces exist in polar covalent compounds.  Dipole-dipole force is stronger than London dispersion force.  Both polar and non-polar covalent compounds have London dispersion forces.  These forces are due to temporary dipoles and do not exist permanently.  The molecules convert to dipoles instantly and disappear.  This is due to the uneven distribution of electrons between their atoms occurs momentarily when the bonded electrons approach nucleus.  Thus it is a weakest force.

Larger size molecules have lesser interaction between nuclei and electrons.  Thus the electrons are free from nuclear force of attraction and easily form dipoles.  Thus, larger the size of the molecules, higher is the strength of London dispersion force.

Blurred answer

Chapter 10 Solutions

General Chemistry: Atoms First

Ch. 10.8 - Prob. 10.11PCh. 10.8 - Prob. 10.12PCh. 10.8 - Prob. 10.13PCh. 10.8 - Prob. 10.14CPCh. 10.9 - Prob. 10.15PCh. 10.9 - Prob. 10.16CPCh. 10.11 - Prob. 10.17PCh. 10.11 - Prob. 10.18PCh. 10.11 - Prob. 10.19CPCh. 10.11 - Prob. 10.20PCh. 10.11 - Prob. 10.21PCh. 10 - Prob. 10.22CPCh. 10 - Prob. 10.23CPCh. 10 - Zinc sulfide, or sphalerite, crystallizes in the...Ch. 10 - Perovskite, a mineral containing calcium, oxygen,...Ch. 10 - Prob. 10.26CPCh. 10 - Prob. 10.27CPCh. 10 - Prob. 10.28CPCh. 10 - Prob. 10.30CPCh. 10 - Prob. 10.31CPCh. 10 - Why dont all molecules with polar covalent bonds...Ch. 10 - Prob. 10.33SPCh. 10 - Prob. 10.34SPCh. 10 - Prob. 10.35SPCh. 10 - Methanol (CH3OH; bp = 65 C) boils nearly 230 C...Ch. 10 - Prob. 10.37SPCh. 10 - Which of the following substances would you expect...Ch. 10 - Prob. 10.39SPCh. 10 - Prob. 10.40SPCh. 10 - The dipole moment of ClF is 0.887 D and the...Ch. 10 - Prob. 10.42SPCh. 10 - Prob. 10.43SPCh. 10 - The class of ions PtX42, where X is a halogen, has...Ch. 10 - Prob. 10.45SPCh. 10 - Prob. 10.46SPCh. 10 - Prob. 10.47SPCh. 10 - Prob. 10.48SPCh. 10 - Prob. 10.49SPCh. 10 - Prob. 10.50SPCh. 10 - Prob. 10.51SPCh. 10 - Mercury has mp = 38.8 C and bp = 356.6 C. What, if...Ch. 10 - Prob. 10.53SPCh. 10 - Prob. 10.54SPCh. 10 - Prob. 10.55SPCh. 10 - Prob. 10.56SPCh. 10 - Prob. 10.57SPCh. 10 - Prob. 10.58SPCh. 10 - How much energy in kilojoules is released when...Ch. 10 - Draw a molar heating curve for ethanol, C2H5OH,...Ch. 10 - Prob. 10.61SPCh. 10 - Prob. 10.62SPCh. 10 - Prob. 10.63SPCh. 10 - Prob. 10.64SPCh. 10 - Prob. 10.65SPCh. 10 - Prob. 10.66SPCh. 10 - Prob. 10.67SPCh. 10 - Prob. 10.68SPCh. 10 - Prob. 10.69SPCh. 10 - Prob. 10.70SPCh. 10 - Prob. 10.71SPCh. 10 - Prob. 10.72SPCh. 10 - Prob. 10.73SPCh. 10 - Prob. 10.74SPCh. 10 - Prob. 10.75SPCh. 10 - Prob. 10.76SPCh. 10 - Which of the substances diamond, Hg, Cl2, glass,...Ch. 10 - Prob. 10.78SPCh. 10 - Prob. 10.79SPCh. 10 - Prob. 10.80SPCh. 10 - Prob. 10.81SPCh. 10 - Prob. 10.82SPCh. 10 - Prob. 10.83SPCh. 10 - Prob. 10.84SPCh. 10 - Prob. 10.85SPCh. 10 - Prob. 10.86SPCh. 10 - Prob. 10.87SPCh. 10 - Prob. 10.88SPCh. 10 - Sodium has a density of 0.971 g/cm3 and...Ch. 10 - Prob. 10.90SPCh. 10 - Prob. 10.91SPCh. 10 - Prob. 10.92SPCh. 10 - Prob. 10.93SPCh. 10 - Prob. 10.94SPCh. 10 - Prob. 10.95SPCh. 10 - Look at the phase diagram of CO2 in Figure 10.29,...Ch. 10 - Prob. 10.97SPCh. 10 - Prob. 10.98SPCh. 10 - Prob. 10.99SPCh. 10 - Prob. 10.100SPCh. 10 - Prob. 10.101SPCh. 10 - Does solid oxygen (Problem 10.99) melt when...Ch. 10 - Prob. 10.103SPCh. 10 - Prob. 10.104SPCh. 10 - Prob. 10.105SPCh. 10 - Prob. 10.106SPCh. 10 - Prob. 10.107SPCh. 10 - Prob. 10.108CHPCh. 10 - Prob. 10.109CHPCh. 10 - Prob. 10.110CHPCh. 10 - Prob. 10.111CHPCh. 10 - Prob. 10.112CHPCh. 10 - Prob. 10.113CHPCh. 10 - Prob. 10.114CHPCh. 10 - Prob. 10.115CHPCh. 10 - Magnesium metal has Hfusion = 9.037 kJ/mol and...Ch. 10 - Prob. 10.117CHPCh. 10 - Prob. 10.118CHPCh. 10 - Prob. 10.119CHPCh. 10 - Prob. 10.120CHPCh. 10 - Prob. 10.121CHPCh. 10 - Prob. 10.122CHPCh. 10 - Prob. 10.123CHPCh. 10 - Calculate the percent volume occupied by the...Ch. 10 - Prob. 10.125CHPCh. 10 - Prob. 10.126CHPCh. 10 - Prob. 10.127CHPCh. 10 - A drawing of the NaCl unit cell is shown in Figure...Ch. 10 - Niobium oxide crystallizes in the following cubic...Ch. 10 - Prob. 10.130CHPCh. 10 - One form of silver telluride (Ag2Te) crystallizes...Ch. 10 - Prob. 10.132CHPCh. 10 - Prob. 10.133MPCh. 10 - Prob. 10.134MPCh. 10 - A group 3A metal has a density of 2.70 g/cm3 and a...Ch. 10 - Prob. 10.136MP
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning