Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 12.138P

A spherical capsule of 3-m radius is fired from a space platform in earth orbit, such that it travels toward the center of the sun at 16 , 000  km/s . Assume that the capsule is a lumped capacitance body with a density−specific heat product of 4  x 10 6  j/m 3 K and that its surface is black.

  1. Derive a differential equation for predicting the capsule temperature as a function of time. Solve this equation to obtain the temperature as a function of time in terms of capsule parameters and its initial temperature T i .
  2. If the capsule begins its journey at 20 C , predict the position of the capsule relative to the sun at which its destruction temperature, 150 C , is reached.

Blurred answer
Students have asked these similar questions
A wood stove is used to heat a single room. The stove is cylindrical in shape, with a diameter of D = 0.400 m and a length of L = 0.500 m, and operates at a temperature of T, = 200 °C. (a) If the temperature of the room is T, = 20°C, determine the amount of radiant energy delivered to the room by the stove each second if the emissivity of the stove is e = 0.920. (b) By definition, the R-value of a conducting slab is given by Atot(Th – To) Poond R = where Atot is the total surface area, Pcond is the power loss by conduction through the slab, Th and Te are the temperatures on the hotter and cooler sides of the slab. If the room has a square shape with walls of height H = 2.40 m and width W = 7.60 m, determine the R-value of the walls and ceiling required to maintain the room temperature at T = 20°C if the outside temperature is T, = 0°C. Note that we are ignoring any heat conveyed by the stove via convection and any energy lost through the walls and windows via convection or radiation.
1. Consider a spaceship that has a volume V = 3000 m³, is effectively spherical in shape and has a density comparable to water (p = 1000 kg m-3). It absorbs CMB radiation (TCMB = 2.73K) and radiates its own radiation with a blackbody spectrum of T = 300K. What is its mass, radius and surface area? At what rate does it absorb energy from the CMB? (Hint: You can use the Stefan-Boltzmann law.) How many CMB photons are absorbed per а. b. с. second? d. At what rate does it emit energy through blackbody radiation? What is the net rate that the spaceship temperature would change if the spaceship has an е. effective heat capacity of pure water: C = 4200 J kg-1K-1 ?
You are shocked to learn that the Sun (which has a mass of 1M⊙) and Betelgeuse (with a mass of 11M⊙) have both become black holes overnight. Which black hole would have a larger event horizon and why? What do you experience if you fly your spaceship towards the Betelgeuse black hole? Describe any effects on you or the spaceship What would an observer on the other side of the galaxy see when looking at the black holes against the background of the rest of the stars in the Milky Way?

Chapter 12 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 12 - Determine the fraction of the total, hemispherical...Ch. 12 - The spectral distribution of the radiation emitted...Ch. 12 - Consider a 5-mm-square, diffuse surface A0 having...Ch. 12 - Assuming blackbody behavior, determine the...Ch. 12 - The dark surface of a ceramic stove top may be...Ch. 12 - The energy flux associated with solar radiation...Ch. 12 - A small flat plate is positioned just beyond the...Ch. 12 - A spherical aluminum shell of inside diameter D=2m...Ch. 12 - The extremely high temperatures needed to trigger...Ch. 12 - An enclosure has an inside area of 100m2 , and its...Ch. 12 - Assuming the earth’s surface is black, estimate...Ch. 12 - A proposed method for generating electricity from...Ch. 12 - Approximations to Planck’s law for the spectral...Ch. 12 - Estimate the wavelength corresponding to maximum...Ch. 12 - A furnace with a long, isothermal, graphite tube...Ch. 12 - Isothermal furnaces with small apertures...Ch. 12 - For materials A and B, whose spectral...Ch. 12 - A small metal object, initially at Ti=1000K ,is...Ch. 12 - The directional total emissivity of nonmetallic...Ch. 12 - Consider the metallic surface of Example 12.7....Ch. 12 - The spectral, directional emissivity of a diffuse...Ch. 12 - Consider the directionally selective surface...Ch. 12 - A sphere is suspended in air in a dark room and...Ch. 12 - Estimate the total, hemispherical emissivity for...Ch. 12 - Sheet steel emerging from the hot roll section of...Ch. 12 - A large body of nonluminous gas at a temperature...Ch. 12 - An opaque surface with the prescribed spectral,...Ch. 12 - The spectral reflectivity distribution for white...Ch. 12 - A diffuse, opaque surface at 700 K has spectral...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - Consider an opaque, diffuse surface for which the...Ch. 12 - Radiation leaves a furnace of inside surface...Ch. 12 - The spectral transmissivity of a 1-mm-thick layer...Ch. 12 - The spectral transmissivity of plain and tinted...Ch. 12 - Referring to the distribution of the spectral...Ch. 12 - The spectral absorptivity and spectral...Ch. 12 - Consider a large furnace with opaque, diffuse,...Ch. 12 - Four diffuse surfaces having the spectral...Ch. 12 - The spectral transmissivity of a 50m -thick...Ch. 12 - An opaque, horizontal plate has a thickness of...Ch. 12 - Two small surfaces, A and B, are placed inside an...Ch. 12 - Consider an opaque, diffuse surface whose spectral...Ch. 12 - The 50-mm peephole of a large furnace operating at...Ch. 12 - The window of a large vacuum chamber is fabricated...Ch. 12 - A thermograph is a device responding to the...Ch. 12 - A radiation thermometer is a radiometer calibrated...Ch. 12 - A radiation detector has an aperture of area...Ch. 12 - A small anodized aluminum block at 35C is heated...Ch. 12 - Consider the diffuse, gray opaque disk A1 , which...Ch. 12 - A two-color pyrometer is a device that is used to...Ch. 12 - An apparatus commonly used for measuring the...Ch. 12 - A procedure for measuring the thermal conductivity...Ch. 12 - One scheme for extending the operation of gas...Ch. 12 - The equipment for heating a wafer during a...Ch. 12 - Neglecting the effects of radiation absorption,...Ch. 12 - Consider the evacuated tube solar collector...Ch. 12 - Solar flux of 900W/m2 is incident on the top side...Ch. 12 - Consider an opaque, gray surface whose directional...Ch. 12 - A contractor must select a roof covering material...Ch. 12 - It is not uncommon for the night sky temperature...Ch. 12 - Plant leaves possess small channels that connect...Ch. 12 - In the central receiver concept of solar energy...Ch. 12 - Radiation from the atmosphere or sky can be...Ch. 12 - A thin sheet of glass is used on the roof of a...Ch. 12 - Growers use giant fans to prevent grapes from...Ch. 12 - A circular metal disk having a diameter of 0.4 m...Ch. 12 - The neighborhood cat likes to sleep on the roof of...Ch. 12 - The exposed surface of a power amplifier for an...Ch. 12 - Consider a thin opaque, horizontal plate with an...Ch. 12 - The oxidized-aluminum wing of an aircraft has a...Ch. 12 - Two plates, one with a black painted surface and...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A spherical satellite in near-earth orbit is...Ch. 12 - An annular fin of thickness t is used as a...Ch. 12 - The directional absorptivity of a gray surface...Ch. 12 - Two special coatings are available for application...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A spherical capsule of 3-m radius is fired from a...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A solar panel mounted on a spacecraft has an area...Ch. 12 - It is known that on clear nights a thin layer of...Ch. 12 - A shallow layer of water is exposed to the natural...Ch. 12 - A roof-cooling system, which operates by...Ch. 12 - A wet towel hangs on a clothes line under...Ch. 12 - Our students perform a laboratory experiment to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license