Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.17P

A concentric tube heat exchanger of length L = 2 m isused to thermally process a pharmaceutical productflowing at a mean velocity of u m , c = 0.1  m/s with an inlet temperature of T c , i = 20 ° C . The inner tube ofdiameter D i = 10 mm is thin walled, and the exteriorof the outer tube ( D o = 20  mm ) is well insulated.Water flows in the annular region between the tubes ata mean velocity of u m , h = 0.2  m/s with an Inlet temperature of T h , i = 60 ° C . Properties of the pharmaceuticalproduct are v = 10 × 10 6  m 2 /s , k = 0.25  W/m K , ρ = 1100  kg/m 3 , and c p = 2460  J/kg K . Evaluate waterproperties at T ¯ h = 50 ° C .
(a) Determine the value of the overall heat transfercoefficient U.
(b) Determine the mean outlet temperature of thepharmaceutical product when the exchanger operates in the counterflow mode.
(c) Determine the mean outlet temperature of thepharmaceutical product when the exchanger operates in the parallel-flow mode.

Blurred answer
Students have asked these similar questions
Steam condensing at 120°C (h, = 2203 kJ/kg) on the shell side of (1 shell and 12 thin-walled tubes) heat exchanger. Water (18 °C, C, =4180 J/kg-"C) enters the tube @ 3.4 kg/s ấnd the temperature difference between the two fluids at the exit is 57°C, assume LMTD correction factor of 1.0, for each tube: length = 2.7 m, diameter = 2.4 cm. What is the overall heat transfer coefficient (W/m¯.°C)? Select bne: O A. 2234.41 O B. 3859.43 C. 3385.47 D. 2979.21 E. 2606.81
Steam condensing at 120°C (h = 2203 kJ/kg) on the shell side of (1 shell and 12 thin-walled tubes) heat exchanger. Water (18 °C, C, =4180 J/kg-°C) enters the tube @ 2.9 kg/s and the temperature difference between the two fluids at the exit is 42°C, assume LMTD correction factor of 1.0, for each tube: length = 2.7 m, diameter = 2.4 cm. What is the overall heat transfer coefficient (W/m .°C)? "fg Select one: A. 4402.97 B. 2905.96 C. 5019.38 D. 3390.28 E. 3874.61
Consider the shell and tube heat exchanger where liquid A of density pa is flowing through the inner tube and is being heated from temperature Tat to Taz by liquid B of density pe flowing counter-currently around the tube The temperature of liquid B decreases from Ten to Tea. In many practical situations the tubular heat exchanger is modelled using simple ordinary differential equations. This is possible if we think about the heat exchanger within the unit as being an exchanger between two perfect mixed tanks. Each one of them contains a liquid. i Investigate the nature of a system a heat exchanger under ideal conditions ii. Develop appropriate equations to model the heat exchange i State the assumption and their implications iv. Perform a degree of freedom analysis.

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License