Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.74P

The power needed to overcome wind and friction dragassociated with an automobile traveling at a constantvelocity of 25 m/s is 9 kW .
(a) Determine the required heat transfer area of theradiator if the vehicle is equipped with an internalcombustion engine operating at an efficiency of 21% . (Assume 79% of the energy generated bythe engine is in the form of waste heat removedby the radiator.) The inlet and outlet mean temperatures of the water with respect to the radiator are T m , i =400 K and T m , o =330 K , respectively. Cooling air is available at 3 Kg/s and 300 K . The radiator may be analyzed as a cross-flow heat exchangerwith both fluids unmixed with an overall heattransfer coefficient of 400 W/m 2 K .
(b) Determine the required water mass flow rate andheat transfer area of the radiator if the vehicle isequipped with a fuel cell operating at 50% efficiency. The fuel cell operating temperature islimited to approximately 85% , so the inlet andoutlet mean temperatures of the water with respectto the radiator are T m , i =355 K and T m , o =330 K , respectively. The air inlet temperature is as in part(a). Assume the flow rate of air is proportional tothe surface area of the radiator. Hint: Iteration isrequired.(c) Determine the required heat transfer area of the radiator and the outlet mean temperature of the water for the fuel cell—equipped vehicle if the mass flowrate of the water is the same as in part (a).

Blurred answer
Students have asked these similar questions
Engr. Dizon, a mechanical engineer, is planning to construct a cooling water pond in Laguna for a power plant. The power plant is known to discharge 20 m/s of cooling water. Estimate the required surface area (in hectares) of the pond if the water temperature is to be lowered from 45 C at its inlet to 35.5 C at its outlet. Assume specific heat of water is 4.186 kJ/kg-K, and an overall heat transfer coefficient of 0.0412 kJ/s-m2-K. Round off your answer to the nearest whole number.
Steam 90°C 10. A shell-and-tube process heater is to be selected to heat water (Cp = 4190 J/kg-°C) from 20°C to 90°C by steam flowing on the shell side. The heat transfer load of the heater is 600 kW. If the inner diameter of the tubes is 1 cm and the velocity of water is not to exceed 3 m/s, determine how many tubes need to be used in the heat exchanger. 20°C Water
QUESTION 10 Consider a water-to-water counter-flow heat ex-changer with these specifications. Hot water enters at 95 °C while cold water enters at 20 °C. The exit temperature of hot water is 15 °C greater than that of cold water, and the mass flow rate of hot water is 50 percent greater than that of cold water. The product of heat transfer surface area and the overall heat transfer coefficient is 1400 W/m².ºC. Taking the specific heat of both cold and hot water to be Cp = 4180 J/kg.ºC, determine i. the outlet temperature of the cold water, ii. the effective-ness of the heat exchanger, iii. the mass flow rate of the cold water, and iv. the heat transfer rate.

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License