Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.4P

A steel tube ( k = 50  W/m K ) of inner and outer diameters D i = 20 mm and D o = 26 mm, respectively, is usedto transfer heat from hot gases flowing over the tube ( h h = 200  W/m 2 K ) to cold water flowing through the tube ( h c = 8000  W/m 2 K ) . What is the cold-side overallheat transfer coefficient U c ? To enhance heat transfer, 16 straight fins of rectangular profile are installed longitudinally along the outer surface of the tube. The finsare equally spaced around the circumference of thetube, each having a thickness of 2 mm and a length of 15 mm. What is the corresponding overall heat transfercoefficient U c ?

Blurred answer
Students have asked these similar questions
A radiator heat exchanger is to be designed for the following specifications. Hot gas at 1145°C, Cold gas temperature 45°C, Unit surface conductance on the hot side, 230 W/m2-K, Unit surface conductance on the cold side 290 W/m2-K, Thermal conductivity of the metal wall 1115 W/m-K. Find the maximum thickness (in mm) of the metal wall between the hot gas and the cold gas so that the maximum temperature of the wall does not exceed 545°C.
b) A shell and tube heat exchanger is constructed of a copper having inner tube of inner diameter 2.8 cm and outer diameter D, = 4.0 cm and an outer tube of diameter 5.2 cm. The length of the tube is 10 m. The convection heat transfer coefficient is given to be h = 750 W /M²°C on the inner surface of the tube and h, = 1350 W/m2°C on the outer surface. Determine | i. The thermal resistance of the heat exchanger ii. The overall heat transfer coefficients U; and U, based on the inner and outer surface areas of the tube, respectively.
A double tube heat exchanger is made of copper (k = 380 W / m. ° C). Inner diameter of inner tube Di = 1.2 cm, outerits diameter is D0 = 1.6 cm and the diameter of the outer pipe is 3.0 cm. Convection heat transfer coefficient on the inner surface of the pipehigh = 700 W / m2. ° C and the heat transfer coefficient on the outer surface h0 = 1400 W / m2. ° C. Pipe sidecontamination factor Rf, i = 0.0005 m2. ° C / W and fouling factor Rf on the body side, 0 = 0.0002 m2. ° C / WAccording to the example; Total heat transfer coefficients (U0 and Ui), taking into account the inner and outer surface areas of the pipecalculate.

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License