Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.78P

Consider the Rankine cycle of Problem 11.77, whichrejects 2.3 MW to the condenser, which is suppliedwith a cooling water flow rate of 70 kg/s at 15°C.
(a) Calculate UA, a parameter that is indicative of thesize of the condenser required for this operatingcondition.
(b) Consider now the situation where the overall heat transfer coefficient for the condenser, U, is
reduced by 10% because of fouling. Determinethe reduction in the thermal efficiency of thecycle caused by fouling, assuming that the cooling water flow rate and water temperature remainthe same and that the condenser is operated at thesame steam pressure.

Blurred answer
Students have asked these similar questions
A 4-pass-low-pressure surface type feedwater heater is designed to heat 92,730 kg/hr of feedwater from 40°C initial to 80°C final temperature using steam bleed at 70 kpa abs. containing 2,645 Kj/kg enthalpy. Assume no subcooling of condensate, determine the effective length of 19 mm O.D x 2 mm thick Muntz metal tubes to be installed, if the water velocity inside the tubes is 1.22 m/s and U = 3000 W /m²k based on the external surface of the tubes. 4.
Q#03: a) Calculate the log-mean-temperature difference and value of overall heat transfer coefficient from the data provided in observation table#01. The data is collected by testing shell-and-tube heat exchanger having parallel/co-current flow arrangement on multi-heat exchanger unit. Note: The contact area for shell-and-tube heat exchanger is 0.3297 m?. Take C,=4.183KJ/kg°C and p=998.2 kg/m?. Cool сol Q: Cool Hot water Hot water in Hot water out water U water in Q. Hot Water (LPM) tank temp. temp. temp. T3 (*C) out S# Water LMTD temp. T4 (°C) temp. Ts (LPM) (°C) (°C) (°C) 3 2 50 50 38 17 27
Provide a design outlining the ideal refrigerant and operating parameters for a direct contact heat exchanger-type cascade refrigeration system that will run with a 150 Tons load at -40°C evaporator and 65°C condensing temperatures. Imagine that your isentropic compression is 74% effective.Draw the engaging temperature as well so that the heat exchange interfaces differ by 5°C. please draw and explain

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY