General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 20.34SP

(a)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in Cu2+ has to be given.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.

If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.

The order of orbitals in their increasing energy is given by

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

(b)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in Ti+2 has to be given.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.

If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.

The order of orbitals in their increasing energy is given by

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

(c)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in Zn2+ has to be given.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.

If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.

The order of orbitals in their increasing energy is given by

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

(d)

Interpretation Introduction

Interpretation:

The number of unpaired electrons in Cr3+ has to be given.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.

If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.

The order of orbitals in their increasing energy is given by

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

Blurred answer
Students have asked these similar questions
Write the electron configurations for each of the following elements and its ions:(a) Ti(b) Ti2+(c) Ti3+(d) Ti4+
How many electrons are in the valence d orbitals in these transition-metal ions? (a) Co3+
Write the ground state electronic configurations for: (a) Ca²+ (b) Cu (c) Cr

Chapter 20 Solutions

General Chemistry: Atoms First

Ch. 20.8 - Prob. 20.11PCh. 20.8 - Prob. 20.12CPCh. 20.9 - Prob. 20.13PCh. 20.9 - Prob. 20.14CPCh. 20.9 - Prob. 20.15PCh. 20.10 - Prob. 20.16PCh. 20.11 - Prob. 20.17PCh. 20.12 - Prob. 20.18PCh. 20.12 - Prob. 20.19PCh. 20.12 - Prob. 20.20PCh. 20.12 - Prob. 20.21PCh. 20 - Prob. 20.22CPCh. 20 - Prob. 20.23CPCh. 20 - Prob. 20.24CPCh. 20 - Prob. 20.25CPCh. 20 - What is the systematic name for each of the...Ch. 20 - Prob. 20.27CPCh. 20 - Prob. 20.28CPCh. 20 - Prob. 20.29CPCh. 20 - Predict the crystal field energy-level diagram for...Ch. 20 - Prob. 20.31CPCh. 20 - Use the periodic table to give the electron...Ch. 20 - Prob. 20.33SPCh. 20 - Prob. 20.34SPCh. 20 - Prob. 20.35SPCh. 20 - Prob. 20.36SPCh. 20 - Prob. 20.37SPCh. 20 - Prob. 20.38SPCh. 20 - Prob. 20.39SPCh. 20 - What is the lanthanide contraction, and why does...Ch. 20 - The atomic radii of zirconium and hafnium are...Ch. 20 - Calculate the sum of the first two ionization...Ch. 20 - Prob. 20.43SPCh. 20 - Prob. 20.44SPCh. 20 - Prob. 20.45SPCh. 20 - Prob. 20.46SPCh. 20 - Prob. 20.47SPCh. 20 - Prob. 20.48SPCh. 20 - Prob. 20.49SPCh. 20 - Prob. 20.50SPCh. 20 - Prob. 20.51SPCh. 20 - Prob. 20.52SPCh. 20 - Prob. 20.53SPCh. 20 - Prob. 20.54SPCh. 20 - Prob. 20.55SPCh. 20 - Write a balanced equation for the industrial...Ch. 20 - Prob. 20.57SPCh. 20 - Prob. 20.58SPCh. 20 - Prob. 20.59SPCh. 20 - Prob. 20.60SPCh. 20 - Prob. 20.61SPCh. 20 - Prob. 20.62SPCh. 20 - Prob. 20.63SPCh. 20 - Prob. 20.64SPCh. 20 - Prob. 20.65SPCh. 20 - Prob. 20.66SPCh. 20 - Prob. 20.67SPCh. 20 - Prob. 20.68SPCh. 20 - Prob. 20.69SPCh. 20 - Prob. 20.70SPCh. 20 - Prob. 20.71SPCh. 20 - Prob. 20.72SPCh. 20 - Prob. 20.73SPCh. 20 - What is the formula of a complex that has each of...Ch. 20 - What is the formula, including the charge, for...Ch. 20 - Prob. 20.76SPCh. 20 - Prob. 20.77SPCh. 20 - Prob. 20.78SPCh. 20 - Prob. 20.79SPCh. 20 - Prob. 20.80SPCh. 20 - Prob. 20.81SPCh. 20 - What is the systematic name for each of the...Ch. 20 - Prob. 20.83SPCh. 20 - Prob. 20.84SPCh. 20 - Prob. 20.85SPCh. 20 - Prob. 20.86SPCh. 20 - Prob. 20.87SPCh. 20 - Prob. 20.88SPCh. 20 - Tell how many diastereoisomers are possible for...Ch. 20 - Which of the following complexes are chiral? (a)...Ch. 20 - Prob. 20.91SPCh. 20 - Prob. 20.92SPCh. 20 - Prob. 20.93SPCh. 20 - Prob. 20.94SPCh. 20 - Prob. 20.95SPCh. 20 - Prob. 20.96SPCh. 20 - Prob. 20.97SPCh. 20 - Prob. 20.98SPCh. 20 - Prob. 20.99SPCh. 20 - Prob. 20.100SPCh. 20 - Prob. 20.101SPCh. 20 - Prob. 20.102SPCh. 20 - Prob. 20.103SPCh. 20 - Prob. 20.104SPCh. 20 - Prob. 20.105SPCh. 20 - For each of the following complexes, draw a...Ch. 20 - Prob. 20.107SPCh. 20 - Prob. 20.108SPCh. 20 - Prob. 20.109SPCh. 20 - Prob. 20.110SPCh. 20 - Prob. 20.111SPCh. 20 - Prob. 20.112SPCh. 20 - Prob. 20.113SPCh. 20 - Prob. 20.114CHPCh. 20 - Prob. 20.115CHPCh. 20 - Prob. 20.116CHPCh. 20 - Prob. 20.117CHPCh. 20 - Prob. 20.118CHPCh. 20 - Prob. 20.119CHPCh. 20 - Prob. 20.120CHPCh. 20 - Prob. 20.121CHPCh. 20 - Prob. 20.122CHPCh. 20 - Prob. 20.123CHPCh. 20 - Prob. 20.124CHPCh. 20 - Draw a crystal field energy-level diagram, and...Ch. 20 - Prob. 20.126CHPCh. 20 - Prob. 20.127CHPCh. 20 - Prob. 20.128CHPCh. 20 - Prob. 20.129CHPCh. 20 - Prob. 20.130CHPCh. 20 - Look at the colors of the isomeric complexes in...Ch. 20 - The amount of paramagnetism for a first-series...Ch. 20 - Prob. 20.133CHPCh. 20 - Prob. 20.134CHPCh. 20 - Prob. 20.135CHPCh. 20 - For each of the following, (i) give the systematic...Ch. 20 - Prob. 20.137CHPCh. 20 - Prob. 20.138CHPCh. 20 - Prob. 20.139MPCh. 20 - Formation constants for the ammonia and...Ch. 20 - Prob. 20.141MPCh. 20 - Prob. 20.143MPCh. 20 - An alternative to cyanide leaching of gold ores is...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning