General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 20.71SP

(a)

Interpretation Introduction

Interpretation:

The coordination number of the metal in the given complex should be identified.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.

Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.

Coordination number: The total number of ligands that forms bond with the metal atom.

Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.

(b)

Interpretation Introduction

Interpretation:

The coordination number of the metal in the given complex should be identified.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.

Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.

Coordination number: The total number of ligands that forms bond with the metal atom.

Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.

(c)

Interpretation Introduction

Interpretation:

The coordination number of the metal in the given complex should be identified.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.

Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.

Coordination number: The total number of ligands that forms bond with the metal atom.

Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.

(d)

Interpretation Introduction

Interpretation:

The coordination number of the metal in the given complex should be identified.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.

Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.

Coordination number: The total number of ligands that forms bond with the metal atom.

Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.

(e)

Interpretation Introduction

Interpretation:

The coordination number of the metal in the given complex should be identified.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.

Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.

Coordination number: The total number of ligands that forms bond with the metal atom.

Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.

(f)

Interpretation Introduction

Interpretation:

The coordination number of the metal in the given complex should be identified.

Concept introduction:

Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.

Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.

Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.

Coordination number: The total number of ligands that forms bond with the metal atom.

Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.

Blurred answer

Chapter 20 Solutions

General Chemistry: Atoms First

Ch. 20.8 - Prob. 20.11PCh. 20.8 - Prob. 20.12CPCh. 20.9 - Prob. 20.13PCh. 20.9 - Prob. 20.14CPCh. 20.9 - Prob. 20.15PCh. 20.10 - Prob. 20.16PCh. 20.11 - Prob. 20.17PCh. 20.12 - Prob. 20.18PCh. 20.12 - Prob. 20.19PCh. 20.12 - Prob. 20.20PCh. 20.12 - Prob. 20.21PCh. 20 - Prob. 20.22CPCh. 20 - Prob. 20.23CPCh. 20 - Prob. 20.24CPCh. 20 - Prob. 20.25CPCh. 20 - What is the systematic name for each of the...Ch. 20 - Prob. 20.27CPCh. 20 - Prob. 20.28CPCh. 20 - Prob. 20.29CPCh. 20 - Predict the crystal field energy-level diagram for...Ch. 20 - Prob. 20.31CPCh. 20 - Use the periodic table to give the electron...Ch. 20 - Prob. 20.33SPCh. 20 - Prob. 20.34SPCh. 20 - Prob. 20.35SPCh. 20 - Prob. 20.36SPCh. 20 - Prob. 20.37SPCh. 20 - Prob. 20.38SPCh. 20 - Prob. 20.39SPCh. 20 - What is the lanthanide contraction, and why does...Ch. 20 - The atomic radii of zirconium and hafnium are...Ch. 20 - Calculate the sum of the first two ionization...Ch. 20 - Prob. 20.43SPCh. 20 - Prob. 20.44SPCh. 20 - Prob. 20.45SPCh. 20 - Prob. 20.46SPCh. 20 - Prob. 20.47SPCh. 20 - Prob. 20.48SPCh. 20 - Prob. 20.49SPCh. 20 - Prob. 20.50SPCh. 20 - Prob. 20.51SPCh. 20 - Prob. 20.52SPCh. 20 - Prob. 20.53SPCh. 20 - Prob. 20.54SPCh. 20 - Prob. 20.55SPCh. 20 - Write a balanced equation for the industrial...Ch. 20 - Prob. 20.57SPCh. 20 - Prob. 20.58SPCh. 20 - Prob. 20.59SPCh. 20 - Prob. 20.60SPCh. 20 - Prob. 20.61SPCh. 20 - Prob. 20.62SPCh. 20 - Prob. 20.63SPCh. 20 - Prob. 20.64SPCh. 20 - Prob. 20.65SPCh. 20 - Prob. 20.66SPCh. 20 - Prob. 20.67SPCh. 20 - Prob. 20.68SPCh. 20 - Prob. 20.69SPCh. 20 - Prob. 20.70SPCh. 20 - Prob. 20.71SPCh. 20 - Prob. 20.72SPCh. 20 - Prob. 20.73SPCh. 20 - What is the formula of a complex that has each of...Ch. 20 - What is the formula, including the charge, for...Ch. 20 - Prob. 20.76SPCh. 20 - Prob. 20.77SPCh. 20 - Prob. 20.78SPCh. 20 - Prob. 20.79SPCh. 20 - Prob. 20.80SPCh. 20 - Prob. 20.81SPCh. 20 - What is the systematic name for each of the...Ch. 20 - Prob. 20.83SPCh. 20 - Prob. 20.84SPCh. 20 - Prob. 20.85SPCh. 20 - Prob. 20.86SPCh. 20 - Prob. 20.87SPCh. 20 - Prob. 20.88SPCh. 20 - Tell how many diastereoisomers are possible for...Ch. 20 - Which of the following complexes are chiral? (a)...Ch. 20 - Prob. 20.91SPCh. 20 - Prob. 20.92SPCh. 20 - Prob. 20.93SPCh. 20 - Prob. 20.94SPCh. 20 - Prob. 20.95SPCh. 20 - Prob. 20.96SPCh. 20 - Prob. 20.97SPCh. 20 - Prob. 20.98SPCh. 20 - Prob. 20.99SPCh. 20 - Prob. 20.100SPCh. 20 - Prob. 20.101SPCh. 20 - Prob. 20.102SPCh. 20 - Prob. 20.103SPCh. 20 - Prob. 20.104SPCh. 20 - Prob. 20.105SPCh. 20 - For each of the following complexes, draw a...Ch. 20 - Prob. 20.107SPCh. 20 - Prob. 20.108SPCh. 20 - Prob. 20.109SPCh. 20 - Prob. 20.110SPCh. 20 - Prob. 20.111SPCh. 20 - Prob. 20.112SPCh. 20 - Prob. 20.113SPCh. 20 - Prob. 20.114CHPCh. 20 - Prob. 20.115CHPCh. 20 - Prob. 20.116CHPCh. 20 - Prob. 20.117CHPCh. 20 - Prob. 20.118CHPCh. 20 - Prob. 20.119CHPCh. 20 - Prob. 20.120CHPCh. 20 - Prob. 20.121CHPCh. 20 - Prob. 20.122CHPCh. 20 - Prob. 20.123CHPCh. 20 - Prob. 20.124CHPCh. 20 - Draw a crystal field energy-level diagram, and...Ch. 20 - Prob. 20.126CHPCh. 20 - Prob. 20.127CHPCh. 20 - Prob. 20.128CHPCh. 20 - Prob. 20.129CHPCh. 20 - Prob. 20.130CHPCh. 20 - Look at the colors of the isomeric complexes in...Ch. 20 - The amount of paramagnetism for a first-series...Ch. 20 - Prob. 20.133CHPCh. 20 - Prob. 20.134CHPCh. 20 - Prob. 20.135CHPCh. 20 - For each of the following, (i) give the systematic...Ch. 20 - Prob. 20.137CHPCh. 20 - Prob. 20.138CHPCh. 20 - Prob. 20.139MPCh. 20 - Formation constants for the ammonia and...Ch. 20 - Prob. 20.141MPCh. 20 - Prob. 20.143MPCh. 20 - An alternative to cyanide leaching of gold ores is...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY